Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(21): 13551-13559, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38757371

RESUMEN

π-Conjugated molecules are viewed as fundamental components in forthcoming molecular nanoelectronics in which semiconducting functional units are linked to each other via metallic molecular wires. However, it is still challenging to construct such block cooligomers on the surface. Here, we present a synthesis of [18]-polyene-linked Zn-porphyrin cooligomers via a two-step reaction of the alkyl groups on Cu(111) and Cu(110). Nonyl groups (-C9H19) substituted at the 5,15-meso positions of Zn-porphyrin were first transformed to alkenyl groups (-C9H10) by dehydrogenation. Subsequently, homocoupling of the terminal -CH2 groups resulted in the formation of extended [18]-polyene-linked porphyrin cooligomers. The structures of the products at each reaction step were investigated by bond-resolved scanning tunneling microscopy at low temperatures. A combination of angle-resolved photoemission spectroscopy and density functional theory calculations revealed the metallic property of the all trans [18]-polyene linker on Cu(110). This finding may provide an approach to fabricate complex nanocarbon structures on the surface.

2.
J Am Chem Soc ; 145(49): 26799-26809, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38051032

RESUMEN

Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20-65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load-unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics.

3.
Chemistry ; 28(28): e202200286, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35333427

RESUMEN

Overcrowded ethylenes composed of 10-methyleneanthrone and two bulky aromatic rings contain a twisted carbon-carbon double (C=C) bond as well as a folded anthrone unit. As such, they are unique frustrated aromatic enes (FAEs). Various colored crystals of these FAEs, obtained in different solvents, correspond to multiple metastable conformations of the FAEs with various twist and fold angles of the C=C bond, as well as various dihedral angles of attached aryl units with respect to the C=C bond. The relationships between color and these parameters associated with conformational features around the C=C bond were elucidated in experimental and computational studies. Owing to the fact that they are separated by small energy barriers, the variously colored conformations in the FAE crystal change in response to various external stimuli, such as mechanical grinding, hydrostatic pressure and thermal heating.

4.
J Am Chem Soc ; 144(6): 2804-2815, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108003

RESUMEN

Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.


Asunto(s)
Ciclooctanos/química , Colorantes Fluorescentes/química , Geles/química , Fenazinas/química , Poliuretanos/química , Ciclooctanos/síntesis química , Fluorescencia , Colorantes Fluorescentes/síntesis química , Conformación Molecular , Fenazinas/síntesis química , Estrés Mecánico
5.
Chem Commun (Camb) ; 58(13): 2128-2131, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35072199

RESUMEN

Understanding the microviscosity of soft condensed matter is important to clarify the mechanisms of chemical, physical or biological events occurring at the nanoscale. Here, we report that flapping fluorophores (FLAP) can serve as microviscosity probes capable of detecting small changes. By the ratiometric fluorescence analysis, one of the FLAP probes detects a macroscopic viscosity change of a few cP, occurring at the thermal phase transition of a nematic liquid crystal. We discuss the impact of the chemical structure on the detection capability, and the orientation of the FLAP molecules in the ground and excited states. This work contributes to experimentally providing a molecular picture of liquid crystals, which are often viewed as a continuum.

6.
Angew Chem Int Ed Engl ; 61(3): e202114697, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34826204

RESUMEN

On-surface chemical reaction has become a very powerful technique to synthesize nanostructures by linking small molecules in the bottom-up approach. Given the fact that most reactants are simultaneously activated at certain temperatures, a sequential reaction in a controlled way has remained challenging. Here, we present an on-surface synthesis of multi-block co-oligomers from trifluoromethyl (CF3 ) substituted porphyrin metal complexes. The oligomerization on Au(111) is demonstrated with a combination of bond-resolved scanning probe microscopy and density functional theory (DFT) calculations. Even after the first oligomerization of single monomer unit, the termini of the oligomer keep the CF3 group, which can be used as a reactant for further coupling in a sequential order. Consequently, copper, cobalt, and palladium complexes of bisanthracene-fused porphyrin oligomers were linked with each other in a designed order.

7.
J Am Chem Soc ; 143(35): 14306-14313, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34448563

RESUMEN

Single-molecule spectroscopy (SMS) of a dual fluorescent flapping molecular probe (N-FLAP) enabled real-time nanoscale monitoring of local free volume dynamics in polystyrenes. The SMS study was realized by structural improvement of a previously reported flapping molecule by nitrogen substitution, leading to increased brightness (22 times) of the probe. In a polystyrene thin film at the temperature of 5 K above the glass transition, the spectra of a single N-FLAP molecule undergo frequent jumps between short- and long-wavelength forms, the latter one indicating planarization of the molecule in the excited state. The observed spectral jumps were statistically analyzed to reveal the dynamics of the molecular environment. The analysis together with MD and QM/MM calculations show that the excited-state planarization of the flapping probe occurs only when sufficiently large polymer free volume of more than, at least, 280 Å3 is available close to the molecule, and that such free volume lasts for an average of 1.2 s.


Asunto(s)
Ciclooctanos/química , Colorantes Fluorescentes/química , Fenazinas/química , Poliestirenos/química , Simulación de Dinámica Molecular , Estructura Molecular , Imagen Individual de Molécula
8.
Angew Chem Int Ed Engl ; 59(38): 16430-16435, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32529765

RESUMEN

Flapping fluorophores (FLAP) with a flexible 8π ring are rapidly gaining attention as a versatile photofunctional system. Here we report a highly photostable "flapping peryleneimide" with an unprecedented fluorogenic mechanism based on a bent-to-planar conformational change in the S1 excited state. The S1 planarization induces an electronic configurational switch, almost quenching the inherent fluorescence (FL) of the peryleneimide moieties. However, the FL quantum yield is remarkably improved with a prolonged lifetime upon a slight environmental change. This fluorogenic function is realized by sensitive π-conjugation design, as a more π-expanded analogue does not show the planarization dynamics. With strong visible-light absorption, the FL lifetime response synchronized with the flexible flapping motion is useful for the latest optical techniques such as FL lifetime imaging microscopy (FLIM).

9.
J Am Chem Soc ; 140(20): 6245-6248, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29747510

RESUMEN

Mechanical control of the molecular energy landscape is an important issue in modern materials science. Mechanophores play a unique role in that the mechanical responses are induced against the activation barrier for intramolecular transformation with the aid of external forces. Here we report an unprecedented activation process of a flexible flapping mechanophore. Namely, thermal void collapse in a crystalline phase triggers mechanophore compression in a definite proportion. Unfavored conformational planarization of the flapping mechanophore is compulsorily induced by packing force, leading to a total energy gain in crystal packing. Fluorescence chromism indicates extended π conjugation resulting from the mechanophore compression, giving rise to an energy transfer from the unpressed to compressed conformers.

10.
Angew Chem Int Ed Engl ; 57(19): 5438-5443, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29516597

RESUMEN

A set of flapping acene dimers fused with an 8π cyclooctatetraene (COT) ring showed distinct excited-state dynamics in solution. While the anthracene dimer showed a fast V-shaped-to-planar conformational change within 10 ps in the lowest excited singlet state, reminding us of extended Baird aromaticity, the tetracene dimer and the pentacene dimer underwent intramolecular singlet fission (SF) in different manners: A fast and reversible SF with a characteristic delayed fluorescence (FL), and a fast and quantitative SF, respectively. Conformational flexibility of the fused COT linkage plays an important role in these ultrafast dynamics, demonstrating the utility of the flapping molecular series as a versatile platform for designing photofunctional systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA