Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002726, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39078817

RESUMEN

The importance of fungi in ecological systems and pathogenicity hinges on their ability to search for nutrients, substrates, and hosts. Despite this, the question of whether fungal hyphae exhibit chemotropism toward them remains largely unresolved and requires close examination at the cellular level. Here, we designed a microfluidic device to assess hyphal chemotropism of Aspergillus nidulans in response to carbon and nitrogen sources, as well as pH. Within this device, hyphae could determine their growth direction in a two-layer flow with distinct compositions that were adjacent but non-mixing. Under conditions with and without a carbon source, hyphae changed growth direction to remain in the presence of a carbon source, but it was still difficult to distinguish between differences in growth and chemotropism. Although nitrogen sources such as ammonia and nitrate are important for growth, the hyphae indicated negative chemotropism to avoid them depending on the specific transporters. This fungus grows equally well at the colony level in the pH range of 4 to 9, but the hyphae exhibited chemotropism to acidic pH. The proton pump PmaA is vital for the chemotropism to acid pH, while the master regulatory for pH adaptation PacC is not involved, suggesting that chemotropism and adaptive growth via gene expression regulation are distinct regulatory mechanisms. Despite various plasma membrane transporters are distributed across membranes except at the hyphal tip, the control of growth direction occurs at the tip. Finally, we explored the mechanisms linking these two phenomena, tip growth and chemotropism.


Asunto(s)
Aspergillus nidulans , Hifa , Aspergillus nidulans/metabolismo , Aspergillus nidulans/fisiología , Hifa/metabolismo , Hifa/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Nutrientes/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Amoníaco/metabolismo
2.
PNAS Nexus ; 2(3): pgad012, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36896124

RESUMEN

Many fungi live as mycelia, which are networks of hyphae. Mycelial networks are suited for the widespread distribution of nutrients and water. The logistical capabilities are critical for the extension of fungal survival areas, nutrient cycling in ecosystems, mycorrhizal symbioses, and virulence. In addition, signal transduction in mycelial networks is predicted to be vital for mycelial function and robustness. A lot of cell biological studies have elucidated protein and membrane trafficking and signal transduction in fungal hyphae; however, there are no reports visualizing signal transduction in mycelia. This paper, by using the fluorescent Ca2+ biosensor, visualized for the first time how calcium signaling is conducted inside the mycelial network in response to localized stimuli in the model fungus Aspergillus nidulans. The wavy propagation of the calcium signal inside the mycelium or the signal blinking in the hyphae varies depending on the type of stress and proximity to the stress. The signals, however, only extended around 1,500 µm, suggesting that the mycelium has a localized response. The mycelium showed growth delay only in the stressed areas. Local stress caused arrest and resumption of mycelial growth through reorganization of the actin cytoskeleton and membrane trafficking. To elucidate the downstream of calcium signaling, calmodulin, and calmodulin-dependent protein kinases, the principal intracellular Ca2+ receptors were immunoprecipitated and their downstream targets were identified by mass spectrometry analyses. Our data provide evidence that the mycelial network, which lacks a brain or nervous system, exhibits decentralized response through locally activated calcium signaling in response to local stress.

3.
Exp Ther Med ; 24(3): 590, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35949334

RESUMEN

Macrophage-mediated xenogeneic rejection is a major immunological obstacle. We recently reported that membrane-type surfactant protein-D (SP-D) on swine endothelial cells (SECs) suppressed macrophage-mediated rejection. Similar to SP-D, the carbohydrate recognition domain of surfactant protein-A (SP-A) can induce inhibitory signals in effector cells. The present study aimed to examine the suppressive effect of SP-A on macrophage-mediated xenogeneic rejection. Naive SECs and SPA-transfected SECs (SEC/SP-A) were co-cultured with THP-1 cells and cytotoxicity was evaluated. To investigate the effect of SP-A on phagocytosis, human macrophages were co-cultured with SEC or SEC/SP-A, and the extent of phagocytosis and production of reactive oxygen species were assessed via flow cytometry. The mRNA expression levels of inflammatory cytokines in macrophages were determined using reverse transcription-PCR. Additionally, the effects of THP-1-Lucia NF-κB cells on transcription factors were evaluated. The cytotoxicity and phagocytosis of SEC/SP-A were significantly decreased compared with those of naive SEC. Furthermore, the co-culture of human macrophages with SEC/SP-A decreased reactive oxygen species production, and the mRNA expression levels of TNFα were decreased in macrophages, whereas those of IL-10 were increased. In addition, NF-κB transcription was decreased in SEC/SP-A compared with that in SEC. In conclusion, the ectopic expression of human SP-A in porcine cells represents an attractive method for suppressing macrophage-mediated cytotoxicity.

4.
Transpl Immunol ; 74: 101663, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35835297

RESUMEN

Cellular xenogeneic rejection by the innate immune system is a major immunological obstruction that needs to be overcome for the successful clinical use of xenografts. Our focus has been on macrophage-mediated xenogeneic rejection, since suppressing macrophage function has considerable potential for practical applications in the area of xenotransplantation. We report herein on an investigation of the suppressive effect of human CD177 (hCD177) against macrophage-mediated xenogeneic rejection. Wild type swine aortic endothelial cell (SEC) and an SEC transfectant with hCD177 (SEC/hCD177) were co-cultured with macrophages, and the degree of cytotoxicity was evaluated by WST-8 assays, and phagocytosis was examined using Calcein-AM labeling methods. The expression of anti/pro-inflammatory cytokines was evaluated by RT-qPCR and the phosphorylation of SHP-1 on macrophages in co-culture was evaluated by Western blotting. The result of cytotoxicity assays indicated that hCD177 suppressed M1 macrophage-mediated xenogeneic rejection (vs. SEC, p < 0.0001). Similarly, the result of phagocytosis assays indicated that hCD177 suppressed it (vs. SEC, p < 0.05). In addition, hCD177 significantly suppressed the expression of IL-1ß, a pro-inflammatory cytokine, in M1 macrophages (vs. SEC, p < 0.01). Luciferase assays using THP1-Lucia NF-kB also showed a significant difference in NF-kB activation (vs. SEC, p < 0.001). In addition, hCD177 was found to induce the phosphorylation of SHP-1 in M1 macrophages (vs. SEC, p < 0.05). These findings indicate that hCD177 suppresses M1 macrophage-mediated xenogeneic rejection, at least in part via in the phosphorylation of SHP-1.


Asunto(s)
Expresión Génica Ectópica , FN-kappa B , Animales , Citocinas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Rechazo de Injerto , Humanos , Isoantígenos/metabolismo , Macrófagos , FN-kappa B/metabolismo , Fagocitosis , Receptores de Superficie Celular/metabolismo , Porcinos
5.
Front Immunol ; 13: 860165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493484

RESUMEN

After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.


Asunto(s)
Proteínas del Sistema Complemento , Rechazo de Injerto , Animales , Antígenos Heterófilos , Activación de Complemento , Proteínas del Sistema Complemento/fisiología , Humanos , Porcinos , Trasplante Heterólogo
6.
Front Immunol ; 13: 858604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418992

RESUMEN

Xenotransplantation is very attractive strategy for addressing the shortage of donors. While hyper acute rejection (HAR) caused by natural antibodies and complement has been well defined, this is not the case for innate cellular xenogeneic rejection. An increasing body of evidence suggests that innate cellular immune responses contribute to xenogeneic rejection. Various molecular incompatibilities between receptors and their ligands across different species typically have an impact on graft outcome. NK cells are activated by direct interaction as well as by antigen dependent cellular cytotoxicity (ADCC) mechanisms. Macrophages are activated through various mechanisms in xenogeneic conditions. Macrophages recognize CD47 as a "marker of self" through binding to SIRPα. A number of studies have shown that incompatibility of porcine CD47 against human SIRPα contributes to the rejection of xenogeneic target cells by macrophages. Neutrophils are an early responder cell that infiltrates xenogeneic grafts. It has also been reported that neutrophil extracellular traps (NETs) activate macrophages as damage-associated pattern molecules (DAMPs). In this review, we summarize recent insights into innate cellular xenogeneic rejection.


Asunto(s)
Antígeno CD47 , Rechazo de Injerto , Inmunidad Celular , Trasplante Heterólogo , Animales , Antígeno CD47/metabolismo , Citotoxicidad Inmunológica , Humanos , Porcinos
7.
Photochem Photobiol ; 98(5): 1229-1235, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35238039

RESUMEN

Extracorporeal photochemotherapy (ECP) is one of the more effective cell therapies for graft-versus-host disease (GvHD). ECP is a widely recommended therapeutic approach for the treatment of chronic GvHD, particularly steroid-refractory GVHD. In recent years, the use of a light emitting diode (LED) in the clinic has attracted considerable interest. In this study, we examined the issue of whether an ultraviolet A1-light emitting diode (UVA1-LED) can be used as a light source in ECP. To compare the efficacy of ECP with conventional UVA lamp and a UVA1-LED, we established an in vitro ECP model. Treatment efficacy was evaluated by measuring the % apoptosis and the inhibition of T-cell proliferation. To investigate the effect of ECP on the innate immune reaction, THP-1 cells with a luciferase reporter gene driven by a NF-kB response element (THP-1 luc NF-kB) were treated with ECP. The LED-ECP induced apoptosis and inhibition of T-cell proliferation as efficiently as a conventional ECP. However, LED-ECP induced less innate immunity in THP-1. Since LED devices are more compact compared with conventional UVA irradiation devices, the use of a UVA1-LED in the treatment of ECP may be a better alternative to conventional ECP therapy.


Asunto(s)
Enfermedad Injerto contra Huésped , Fotoféresis , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Humanos , FN-kappa B , Esteroides/uso terapéutico , Resultado del Tratamiento
8.
Transplant Proc ; 54(2): 522-524, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35031120

RESUMEN

The CRISPR/Cas3 system, classified in class I system, was recently focused as a new technology. For application of this system to porcine cells, the plasmids of bpNLS-Cascade, BPNLS-hCas3, and pBS-U6icrRNA were prepared. Initially, 2 crRNAs were established in the exon 9 of pig Gal-T (GGTA1) as #45 and #86. Next, hCas3 + #45 + #86 (group 1, control), Cascade + hCas3 + #45 (group 2), Cascade + hCas3 + #86 (group 3), and Cascade + hCas3 + #45 + #86 (group 4) were set and transfected into pig fibroblasts. Transfected cells were analyzed for bulk expression of α1,3Gal epitope by fluorescence-activated cell sorting (FACS), using a GSI-B4 lectin 2 days after the transfection. As the results, changes of expression are observed in order of G4>G2>G3, indicating the effect of the Cas3 system. Therefore, the nested polymerase chain reaction (PCR) for target region of GGTA1 was performed. Next, the PCR products from each group were checked in blotting, and the products were placed into the cloning sit of TOPO vector and transformed into Escherichia coli. Sixteen colonies of each group were checked by PCR, and clones containing PCR product with slightly varying length were evaluated. The direct sequence of these PCR changes were demonstrated as 294 to 754 bp deletions. In conclusion, we confirmed the effect of the CRISPR/Cas3 system on pig cell, especially in xenotransplantation.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Animales , Humanos , Porcinos , Transfección , Trasplante Heterólogo
9.
mBio ; 12(2)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727355

RESUMEN

Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. However, it remains unclear how both features act cooperatively to determine cell shape. Here, we investigated this relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 µm-width channels of microfluidic devices. Since the channels are much narrower than the diameter of hyphae, any hypha growing through the channel must adapt its morphology. Live-cell imaging analyses revealed that hyphae of some species continued growing through the channels, whereas hyphae of other species often ceased growing when passing through the channels, or had lost apical polarity after emerging from the other end of the channel. Fluorescence live-cell imaging analyses of the Spitzenkörper, a collection of secretory vesicles and polarity-related proteins at the hyphal tip, in Neurospora crassa indicates that hyphal tip growth requires a very delicate balance of ordered exocytosis to maintain polarity in spatially confined environments. We analyzed the mycelial growth of seven fungal species from different lineages, including phytopathogenic fungi. This comparative approach revealed that the growth defects induced by the channels were not correlated with their taxonomic classification or with the width of hyphae, but, rather, correlated with the hyphal elongation rate. This report indicates a trade-off between morphological plasticity and velocity in mycelial growth and serves to help understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology, and pathogenicity.IMPORTANCE Cell morphology, which is controlled by polarity and growth, is fundamental for all cellular functions. However how polarity and growth act cooperatively to control cell shape remains unclear. Here we investigated their relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 µm-width channels of microfluidic devices. We found that most fast growing hyphae often lost the cell polarity after emerging from the channels, whereas slow growing hyphae retained polarity and continued growing, indicating a trade-off between plasticity and velocity in mycelial growth. These results serve to understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology and pathogenicity.


Asunto(s)
Polaridad Celular , Hongos/crecimiento & desarrollo , Hifa/citología , Hifa/crecimiento & desarrollo , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Microtúbulos , Neurospora crassa/crecimiento & desarrollo , Neurospora crassa/metabolismo , Vesículas Secretoras/metabolismo
10.
Dalton Trans ; 48(21): 7198-7202, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30637432

RESUMEN

The 2D coordination polymers, [Mn(salen)]2[PtII(CN)4]1-x[PtIV(CN)4(I2)]x (salen = N,N'-ethylenebis(salicylideneaminato), x = 0.18 (1), 0.45 (2), 0.85 (3)), have been synthesized via consecutive oxidative additions of iodine to the 2D undulating layers in [Mn(salen)]2[PtII(CN)4]. The presence of I-Pt-I chains perpendicular to the layers and the inhomogeneity of individual I-Pt-I sites were demonstrated. The I-Pt-I chains in 3 give rise to an absorption band involving the excitation that arises from an antibonding nature orbital to the corresponding bonding nature orbital between iodides in the I-Pt-I bridging units. Moreover, variable-temperature X-ray powder diffraction patterns and Raman spectra for 1 and 2 indicate that some I-Pt-I sites display different vibrational energies that are associated with the contraction of the zigzag 2D layers.

11.
Inorg Chem ; 57(18): 11588-11596, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30188124

RESUMEN

The ability to tune physical properties is attractive for the development of new materials for myriad applications. Understanding and controlling the structural dynamics in complicated network structures like coordination polymers (CPs) is particularly challenging. We report a series of two-dimensional CPs [Mn(salen)]2[M(CN)4]· xH2O (M = Pt (1), PtI2 (2), and MnN (3)) incorporating zigzag cyano-network layers that display composition-dependent anisotropic thermal expansion properties. Variable-temperature single-crystal X-ray structural analyses demonstrated that the thermal expansion behavior is caused by double structural distortions involving [Mn(salen)]+ units incorporated into the zigzag layers. Thermal relaxations produce structural transformations resulting in positive thermal expansion for 2·H2O and negative thermal expansion for 3. In the case of 1·H2O, the relaxation does not occur and zero thermal expansion results in the plane between 200 to 380 K. The present study proposes a new strategy based on structural distortions in coordination networks to control thermal responsivities of frameworks.

12.
Inorg Chem ; 56(11): 6225-6233, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28492319

RESUMEN

Zero in-plane thermal expansion (TE) in a two-dimensional (2D) coordination polymer is demonstrated. The combination of components that expand and those that shrink into zigzag layers results in no net area change in the 2D materials with temperature. Single crystals of [Mn(salen)]2[Mn(N)(CN)4(guest)] (salen = N,N'-ethylenebis(salicylideneaminato), guest = MeOH and MeCN) were prepared, and variable-temperature single-crystal X-ray structural analyses demonstrated that these compounds exhibited both anisotropic positive and negative thermal expansion depending on the guest species. The TE behavior results from distortions of the octahedral coordination geometry of [Mn(salen)]+ units in the zigzag layers. When both guests MeOH and MeCN were incorporated into one material, [Mn(salen)]2[Mn(N)(CN)4(MeOH)0.25(MeCN)0.75], zero in-plane TE resulted in a range of temperature between 380 and 440 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA