Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37964898

RESUMEN

Magnetic fluctuations is the leading candidate for pairing in cuprate, iron-based, and heavy fermion superconductors. This view is challenged by the recent discovery of nodeless superconductivity in CeCu2Si2, and calls for a detailed understanding of the corresponding magnetic fluctuations. Here, we mapped out the magnetic excitations in superconducting (S-type) CeCu2Si2 using inelastic neutron scattering, finding a strongly asymmetric dispersion for E≲1.5meV, which at higher energies evolves into broad columnar magnetic excitations that extend to E≳5meV. While low-energy magnetic excitations exhibit marked three-dimensional characteristics, the high-energy magnetic excitations in CeCu2Si2 are almost two-dimensional, reminiscent of paramagnons found in cuprate and iron-based superconductors. By comparing our experimental findings with calculations in the random-phase approximation,we find that the magnetic excitations in CeCu2Si2 arise from quasiparticles associated with its heavy electron band, which are also responsible for superconductivity. Our results provide a basis for understanding magnetism and superconductivity in CeCu2Si2, and demonstrate the utility of neutron scattering in probing band renormalization in heavy fermion metals.

2.
Nano Lett ; 17(5): 2825-2832, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418675

RESUMEN

Electric-field (E-field) control of magnetism enabled by multiferroic materials has the potential to revolutionize the landscape of present memory devices plagued with high energy dissipation. To date, this E-field controlled multiferroic scheme has only been demonstrated at room temperature using BiFeO3 films grown on DyScO3, a unique and expensive substrate, which gives rise to a particular ferroelectric domain pattern in BiFeO3. Here, we demonstrate reversible electric-field-induced switching of the magnetic state of the Co layer in Co/BiFeO3 (BFO) (001) thin film heterostructures fabricated on (001) SrTiO3 (STO) substrates. The angular dependence of the coercivity and the remanent magnetization of the Co layer indicates that its easy axis reversibly switches back and forth 45° between the (100) and the (110) crystallographic directions of STO as a result of alternating application of positive and negative voltage pulses between the patterned top Co electrode layer and the (001) SrRuO3 (SRO) layer on which the ferroelectric BFO is epitaxially grown. The coercivity (HC) of the Co layer exhibits a hysteretic behavior between two states as a function of voltage. A mechanism based on the intrinsic magnetoelectric coupling in multiferroic BFO involving projection of antiferromagnetic G-type domains is used to explain the observation. We have also measured the exact canting angle of the G-type domain in strained BFO films for the first time using neutron diffraction. These results suggest a pathway to integrating BFO-based devices on Si wafers for implementing low power consumption and nonvolatile magnetoelectronic devices.

3.
Nat Commun ; 7: 13879, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991514

RESUMEN

Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1-xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ∼x=0.05. Our discovery of a Mott-insulating state in NaFe1-xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity.

4.
Nat Commun ; 7: 13146, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27759004

RESUMEN

Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon-phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon-phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it.

5.
Phys Rev Lett ; 113(22): 228101, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25494092

RESUMEN

Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

6.
PLoS One ; 8(6): e66162, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23823623

RESUMEN

Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered ([Formula: see text]) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are in excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476-4481], which reported the existence of nanometer size [Formula: see text] domains in a liquid disordered lipid environment.


Asunto(s)
Colesterol/química , Lípidos de la Membrana/química , Estructura Molecular
7.
Phys Rev Lett ; 108(24): 247002, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004310

RESUMEN

Superconductivity in the iron pnictides develops near antiferromagnetism, and the antiferromagnetic (AF) phase appears to overlap with the superconducting phase in some materials such as BaFe(2-x)T(x)As2 (where T=Co or Ni). Here we use neutron scattering to demonstrate that genuine long-range AF order and superconductivity do not coexist in BaFe(2-x)Ni(x)As2 near optimal superconductivity. In addition, we find a first-order-like AF-to-superconductivity phase transition with no evidence for a magnetic quantum critical point. Instead, the data reveal that incommensurate short-range AF order coexists and competes with superconductivity, where the AF spin correlation length is comparable to the superconducting coherence length.

8.
Rev Sci Instrum ; 79(9): 095102, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19044449

RESUMEN

Small angle neutron scattering (SANS) instruments typically cover a q (scattering vector) range from 0.001 to 0.6 A(-1). This range in q is achieved through a combination of cold neutrons (lambda>4 A) and a highly collimated beam. However, as a direct result of the unavailability of a cold source at the Canadian Neutron Beam Centre (CNBC), we have resorted to adapting a triple-axis spectrometer to perform SANS measurements. This is achieved through the use of multiple converging incident beams which enhance the neutron flux on the sample by a factor of 20, compared to a single beam of the same spot size. Furthermore, smearing effects due to vertical divergence from the slit geometry are reduced through the use of horizontal Soller collimators. As a result, this modified triple-axis spectrometer enables SANS measurements to a minimum q value (q(min)) of approximately 0.006 A(-1). Data obtained from the modified triple-axis spectrometer are in good agreement with those data from the 30 m NG3-SANS instrument located at the National Institute of Standards and Technology (Gaithersburg, MD, USA).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...