Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(12): e2300769120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36927157

RESUMEN

In neurodegenerative diseases, proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations in situ. Here, we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid-binding dyes to identify six distinct different conformational strains in vitro, as well as amyloid-ß (Aß) deposits in different transgenic mouse models. Our EMBER (excitation multiplexed bright emission recording) imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. EMBER has in situ identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. In future studies, EMBER should enable high-throughput measurements of the fidelity of strain transmission in cellular and animal neurodegenerative diseases models, time course of amyloid strain propagation, and identification of pathogenic versus benign strains.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Pick , Ratones , Animales , Humanos , Microscopía , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Pick/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Placa Amiloide/metabolismo
2.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778268

RESUMEN

In neurodegenerative diseases proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations in situ . Here we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid binding dyes to identify six distinct different conformational strains in vitro , as well as Aß deposits in different transgenic mouse models. Our EMBER (excitation multiplexed bright emission recording) imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. EMBER has in situ identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. In future studies, EMBER should enable high-throughput measurements of the fidelity of strain transmission in cellular and animal neurodegenerative diseases models, time course of amyloid strain propagation, and identification of pathogenic versus benign strains. Significance: In neurodegenerative diseases proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. There is a need to rapidly identify these amyloid conformations in situ . Here we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid binding dyes to identify six distinct different conformational strains in vitro , as well as Aß deposits in different transgenic mouse models. Our imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. We also identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. These findings will facilitate the identification of pathogenic protein aggregates to guide research and treatment of protein misfolding diseases.

5.
Chem Commun (Camb) ; (15): 1624-5, 2002 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-12170813

RESUMEN

The synthesis of taurospongin A has been achieved using, as a key step, a pi-allyltricarbonyliron lactone complex to control a highly stereoselective addition of a methyl group to a carbonyl unit located in the side chain of the complex.


Asunto(s)
Alquinos/síntesis química , Inhibidores Enzimáticos/síntesis química , Ésteres/síntesis química , Inhibidores de la Síntesis del Ácido Nucleico , Poríferos/química , Inhibidores de la Transcriptasa Inversa/síntesis química , Animales , Indicadores y Reactivos , Compuestos de Hierro , Lactonas , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA