Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540957

RESUMEN

Bacteria generally release extracellular membrane vesicles (MVs), which are nanoparticles that play important roles in bacterial-bacterial and bacterial-host communication. As probiotics, lactic acid bacteria provide diverse health benefits to their hosts. In this study, we found that the Gram-positive lactic acid bacteria Lactiplantibacillus plantarum subsp. plantarum NBRC 15891 produce high amounts of MVs (LpMVs), and that LpMVs inhibit interleukin (IL)-8 production induced by lipopolysaccharide in intestinal epithelial HT29 cells. Heat- or UV-killed bacterial cells did not exhibit anti-inflammatory effects, and there was no uptake of these bacterial cells; contrarily, LpMVs were taken up into the cytoplasm of HT29 cells. Small RNAs extracted from LpMVs also suppressed IL-8 production in HT29 cells, suggesting that RNAs in the cytoplasm of bacterial cells are encapsulated in the MVs and released from the cells, which may be delivered to HT29 cells to exert their anti-inflammatory effects. In addition, administration of LpMVs to mice with dextran sodium sulfate-induced colitis alleviated colitis-induced weight loss and colon length shortening, indicating that LpMV intake is likely to be effective in preventing or ameliorating colitis.

2.
Biosci Microbiota Food Health ; 43(1): 55-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188665

RESUMEN

Nanosized membrane vesicles (MVs) released by bacteria play important roles in both bacteria-bacteria and bacteria-host interactions. Some gram-positive lactic acid bacteria produce MVs exhibiting immunoregulatory activity in the host. We found that both bacterial cells and MVs of Limosilactobacillus antri JCM 15950, isolated from the human stomach mucosa, enhance immunoglobulin A production by murine Peyer's patch cells. However, the thick cell walls of gram-positive bacteria resulted in low MV production, limiting experiments and applications using MVs. In this study, we evaluated the effects of glycine, which inhibits cell wall synthesis, on the immunostimulatory MV productivity of L. antri. Glycine inhibited bacterial growth while increasing MV production, with 20 g/L glycine increasing MV production approximately 12-fold. Glycine was most effective at increasing MV production when added in the early exponential phase, which indicated that cell division in the presence of glycine increased MV production. Finally, glycine increased MV productivity approximately 16-fold. Furthermore, glycine-induced MVs promoted interleukin-6 production by macrophage-like J774.1 cells, and the immunostimulatory activity was comparable to that of spontaneously produced MVs. Our results indicate that glycine is an effective agent for improving the production of MVs with immunostimulatory activity in gram-positive lactic acid bacteria, which can be applied as mucosal adjuvants and functional foods.

3.
J Biosci Bioeng ; 136(2): 129-135, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301698

RESUMEN

Lactic acid bacteria (LAB) are known to produce a large amount of lactate when cultured under non-aerated conditions, which inhibits their growth at high concentrations. Our previous studies have shown that LAB can be cultured without lactate production under aerated conditions at a low specific growth rate. In this study, we investigated the effects of specific growth rate on cell yield and the specific production rates of metabolites in aerated fed-batch cultures of Lactococcus lactis MG1363. The results showed that lactate and acetoin production could be suppressed at specific growth rates below 0.2 h-1, whereas acetate production was the highest at a specific growth rate of 0.2 h-1. When LAB was cultured at a specific growth rate of 0.25 h-1 with the addition of 5 mg/L heme to assist ATP production by respiration, lactate and acetate production was suppressed, and cell concentration reached 19 g-dry-cell/L (5.6 × 10ˆ10 cfu/mL) with a high cell yield of 0.42 ± 0.02 g-dry-cell/g-glucose.


Asunto(s)
Lactococcus lactis , Fermentación , Ácido Láctico/metabolismo , Glucosa/metabolismo , Acetatos/metabolismo
4.
Biosci Biotechnol Biochem ; 87(8): 907-915, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37169920

RESUMEN

We characterized the membrane vesicle fraction (RD-MV fraction) from bacterial strain RD055328, which is related to members of the genus Companilactobacillus and Lactiplantibacillus plantarum. RD-MVs and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were detected in the RD-MV fraction. Immunoglobulin A (IgA) was produced by Peyer's patch cells following the addition of the RD-MV fraction. In the presence of the RD-MV fraction, RAW264 cells produced the pro-inflammatory cytokine IL-6. Recombinant GAPDH probably induced the production of IL-6 by RAW264 cells via superficial toll-like receptor 2 (TLR2) recognition. A confocal laser scanning microscopy image analysis indicated that RD-MVs and GAPDH were taken up by RAW264 cells. GAPDH wrapped around RAW264 cells. We suggest that GAPDH from strain RD055328 enhanced the production of IgA by acquired immune cells via the production of IL-6 by innate immune cells through TLR2 signal transduction.


Asunto(s)
Proteínas Bacterianas , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Lactobacillaceae , Transducción de Señal , Receptor Toll-Like 2 , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Inmunoglobulina A/inmunología , Interleucina-6/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/aislamiento & purificación , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/farmacología , Adyuvantes Inmunológicos/genética , Adyuvantes Inmunológicos/aislamiento & purificación , Adyuvantes Inmunológicos/farmacología , Animales , Ratones , Lactobacillaceae/clasificación , Lactobacillaceae/enzimología , Lactobacillaceae/genética , Lactobacillaceae/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , FN-kappa B/inmunología , Activación Transcripcional/efectos de los fármacos
5.
Biosci Biotechnol Biochem ; 87(1): 119-128, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36331264

RESUMEN

Immunoglobulin A (IgA) is involved in the maintenance of gut homeostasis. Although the oral administration of bifidobacteria increases the amount of fecal IgA, the effects of bifidobacteria on intestinal immunity remain unclear. We found and characterized membrane vesicles (MVs) derived from Bifidobacterium longum subsp. infantis toward host immune cells. Bifidobacterium infantis MVs consisted of a cytoplasmic membrane, and extracellular solute-binding protein (ESBP) was specifically detected. In the presence of B. infantis MVs or recombinant ESBP, RAW264 cells produced the pro-inflammatory cytokine IL-6. IgA was produced by Peyer's patches cells following the addition of B. infantis MVs. Therefore, ESBP of B. infantis MVs is involved in the production of IgA by acquired immune cells via the production of IL-6 by innate immune cells.


Asunto(s)
Bifidobacterium longum subspecies infantis , Interleucina-6 , Interleucina-6/metabolismo , Bifidobacterium/metabolismo , Heces/microbiología , Inmunoglobulina A
6.
Sci Rep ; 12(1): 13330, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941134

RESUMEN

We investigated the characteristics and functionalities of extracellular vesicles (EVs) from Lactiplantibacillus plantarum (previously Lactobacillus plantarum) towards host immune cells. L. plantarum produces EVs that have a cytoplasmic membrane and contain cytoplasmic metabolites, membrane and cytoplasmic proteins, and small RNAs, but not bacterial cell wall components, namely, lipoteichoic acid and peptidoglycan. In the presence of L. plantarum EVs, Raw264 cells inducibly produced the pro-inflammatory cytokines IL-1ß and IL-6, the anti-inflammatory cytokine IL-10, and IF-γ and IL-12, which are involved in the differentiation of naive T-helper cells into T-helper type 1 cells. IgA was produced by PP cells following the addition of EVs. Therefore, L. plantarum EVs activated innate and acquired immune responses. L. plantarum EVs are recognized by Toll-like receptor 2 (TLR2), which activates NF-κB, but not by other TLRs or NOD-like receptors. N-acylated peptides from lipoprotein19180 (Lp19180) in L. plantarum EVs were identified as novel TLR2 ligands. Therefore, L. plantarum induces an immunostimulation though the TLR2 recognition of the N-acylated amino acid moiety of Lp19180 in EVs. Additionally, we detected a large amount of EVs in the rat gastrointestinal tract for the first time, suggesting that EVs released by probiotics function as a modulator of intestinal immunity.


Asunto(s)
Vesículas Extracelulares , Lactobacillus plantarum , Probióticos , Animales , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Lactobacillus plantarum/metabolismo , Probióticos/farmacología , Ratas , Receptor Toll-Like 2/metabolismo
7.
Biol Pharm Bull ; 45(3): 339-353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228400

RESUMEN

Transforming growth factor (TGF)-ß1 and prostaglandin E2 (PGE2) are humoral factors critically involved in the induction of immunosuppression in the microenvironment of various types of tumors, including melanoma. In this study, we identified a natural compound that attenuated TGF-ß1- and PGE2-induced immunosuppression and examined its effect on B16 melanoma growth in mice. By screening 502 natural compounds for attenuating activity against TGF-ß1- or PGE2-induced suppression of cytolysis in poly(I:C)-stimulated murine splenocytes, we found that betulin was the most potent compound. Betulin also reduced TGF-ß1- and PGE2-induced downregulation of perforin and granzyme B mRNA expression and cell surface expression of NKG2D and CD69 in natural killer (NK) cells. Cell depletion and coculture experiments showed that NK cells, dendritic cells, B cells, and T cells were necessary for the attenuating effects of betulin. Structure-activity relationship analysis revealed that two hydroxyl groups at positions C3 and C28 of betulin, their cis-configuration, and methyl group at C30 played crucial roles in its attenuating activity. In a subcutaneous implantation model of B16 melanoma in mice, intratumor administration of betulin and LY2157299, a TGF-ß1 type I receptor kinase inhibitor, significantly retarded the growth of B16 melanoma. Notably, betulin increased significantly the number of CD69 positive NK cells in tumor sites at early stages of post-tumor cell injection. Our data suggest that betulin inhibits the growth of B16 melanoma by enhancing NK cell activity through attenuating the immunosuppressive tumor microenvironment.


Asunto(s)
Dinoprostona , Melanoma Experimental , Factor de Crecimiento Transformador beta1 , Triterpenos , Animales , Dinoprostona/metabolismo , Células Asesinas Naturales , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Triterpenos/farmacología , Microambiente Tumoral
8.
Biosci Biotechnol Biochem ; 85(6): 1536-1545, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33885732

RESUMEN

We analyzed the mechanisms underlying enhanced IgA production in the cells of Peyer's patch cells via membrane vesicles derived from Lactobacillus sakei subsp. sakei NBRC 15893. Depletion of CD11c+ cells from Peyer's patch cells suppressed the enhanced IgA production mediated by membrane vesicles. Meanwhile, the stimulation of bone-marrow-derived dendritic cells with membrane vesicles increased gene expression of inducible nitric oxide synthase, retinaldehyde dehydrogenase 2, and several inflammatory cytokines. The production of nitric oxide and interleukin (IL)-6 by membrane vesicle stimulation was induced via Toll-like receptor 2 on bone marrow-derived dendritic cells. Inhibition of inducible nitric oxide synthase and retinaldehyde dehydrogenase 2, as well as the neutralization of IL-6 in Peyer's patch cells, suppressed the enhanced IgA production by membrane vesicle stimulation. Hence, nitric oxide, retinoic acid, and IL-6 induced by membrane vesicles play crucial roles in the enhanced IgA production elicited by membrane vesicles in Peyer's patch cells.


Asunto(s)
Membrana Celular/metabolismo , Inmunoglobulina A/biosíntesis , Latilactobacillus sakei/citología , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/citología
9.
Biosci Microbiota Food Health ; 40(1): 59-64, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33520570

RESUMEN

Adherence of probiotics to dietary fibers present in the intestinal tract may affect adhesion to intestinal epithelial cells. The properties of the adhesion of bifidobacteria to mucin or epithelial cells have been well studied; however, adhesion of bifidobacteria to dietary fiber has not been investigated. The adhesion ratio of six Bifidobacterium strains to cellulose and chitin was examined; among the strains, Bifidobacterium animalis subsp. lactis JCM 10602 showed high adherence to both cellulose and chitin, and two strains showed high adherence to only chitin. The ratios of adhesion of B. animalis to cellulose and chitin were positively and negatively correlated with ionic strength, respectively. These data suggest that hydrophobic and electrostatic interactions are involved in the adhesion to cellulose and chitin, respectively. The adhesion ratios of the cells in the late logarithmic phase to cellulose and chitin decreased by approximately 40% and 70% of the cells in the early logarithmic phase, respectively. Furthermore, the adhesion ratio to cellulose decreased with increasing bile concentration regardless of the culture phase of the cells. On the other hand, the adhesion ratio to chitin of cells in the early logarithmic phase decreased with increasing bile concentration; however, that of cells in the late logarithmic phase increased slightly, suggesting that adhesins differ depending on the culture phase. Our results indicated the importance of considering adhesion to both dietary fibers and the intestinal mucosa when using bifidobacteria as probiotics.

10.
J Biosci Bioeng ; 130(4): 402-408, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32669208

RESUMEN

Aerobic fed-batch cultures were studied as a means of suppressing the production of lactate, which inhibits the growth of lactic acid bacteria (LAB). LAB produce lactate via lactate dehydrogenase (LDH), regenerating nicotinamide adenine dinucleotide (NAD+) consumed during glycolysis. Therefore, we focused on NADH oxidase (NOX), employing oxygen as an electron acceptor, as an alternative pathway to LDH for NAD+ regeneration. To avoid glucose repression of NOX and NAD+ consumption by glycolysis exceeding NAD+ regeneration by NOX, glucose was fed gradually. When Lactococcus lactis MG 1363 was aerobically fed at a specific growth rate of 0.2 h-1, the amount of lactate produced per amount of grown cell was reduced to 12% of that in anaerobic batch cultures. Metabolic flux analysis revealed that in addition to NAD+ regeneration by NOX, ATP acquisition by production of acetate and NAD+ regeneration by production of acetoin and 2,3-butanediol contributed to suppression of lactate production.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Ácido Láctico/biosíntesis , Lactococcus lactis/crecimiento & desarrollo , Lactococcus lactis/metabolismo , Aerobiosis , Glucosa/metabolismo , Glucólisis , L-Lactato Deshidrogenasa/metabolismo , Complejos Multienzimáticos/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/metabolismo
11.
J Biosci Bioeng ; 129(1): 110-115, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31519396

RESUMEN

Lactate produced by lactic acid bacteria inhibits their growth. To suppress lactate production, it is necessary to regenerate NAD+ consumed by glycolysis with alternative pathways other than lactate dehydrogenase. In a heterofermentative lactic acid bacterium, Lactobacillus reuteri JCM1112, suppression of lactate production by regenerating NAD+ when producing 1,3-propanediol from glycerol was investigated. The bacterium produced lactate with a yield of 4.7 ± 0.8 g·g-cell-1 in a batch culture using glucose as the sole carbon source. When glycerol was added to glucose at a molar ratio (rGly/Glc) of three in the batch culture, the bacterium produced 1,3-propanediol at 1.6 ± 0.7 g·g-cell-1·h-1 and the lactate yield decreased to 3.6 ± 0.5 g·g-cell-1. When glycerol was co-fed with glucose exponentially to give a target specific growth rate of 0.1 h-1 (rGly/Glc = 3), the lactate yield decreased to 1.5 ± 0.2 g·g-cell-1. The lactate production when glycerol was added together with glucose was reduced to one-third of that observed in the batch culture using glucose as a carbon source.


Asunto(s)
Glicerol/metabolismo , Ácido Láctico/biosíntesis , Ácido Láctico/metabolismo , Limosilactobacillus reuteri/metabolismo , Técnicas de Cultivo Celular por Lotes , Fermentación , Glucosa/metabolismo , Glucólisis , Glicoles de Propileno/metabolismo
12.
J Biosci Bioeng ; 129(1): 47-51, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31371162

RESUMEN

Lactic acid bacteria (LAB) grow by producing lactate from sugar. However, the accumulation of lactate inhibits their growth. Here, the lactate productivity per cell in a semi-solid medium prepared with a chlorella powder in several LAB strains was much lower than that in the conventional MRS medium. Furthermore, the lactate production was suppressed not only in semi-solid medium, but also in chlorella liquid medium. The lactate productivity by Lactococcus lactis subsp. lactis NBRC 12007 in the chlorella liquid medium and MRS medium was 3.0 and 6.9 g-lactate·g-cell-1, respectively. The productivity of lactate in the chlorella liquid medium decreased to 44% of that in MRS medium. Gas chromatography/mass spectrometry (GC/MS) analysis of the culture supernatants revealed that the utilization of sucrose in the chlorella powder led to the suppression of lactate production. Comparison of the metabolites extracted from the cells indicated that the two ATP generating pathways, the arginine deiminase pathway and the decarboxylation reaction of glutamate and GABA, which are usually repressed by glucose, are activated in chlorella medium. It was considered that these pathways which do not require NAD+ for generation of ATP are not repressed when sucrose is used as a carbon source. Thus, the utilization of these pathways results in the suppression of the lactate production.


Asunto(s)
Ácido Láctico/metabolismo , Lactococcus lactis/metabolismo , Sacarosa/metabolismo , Adenosina Trifosfato/metabolismo , Chlorella/metabolismo , Medios de Cultivo/metabolismo , Glucosa/metabolismo , Lactococcus lactis/crecimiento & desarrollo , NAD/metabolismo
13.
Biosci Microbiota Food Health ; 38(1): 23-29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30705799

RESUMEN

Immunoglobulin (Ig) A in the mucus of the intestinal tract plays an important role in preventing the invasion of pathogenic microorganisms and regulating the composition of the gut microbiota. Several strains of probiotic lactic acid bacteria (LAB) are known to promote intestinal IgA production. Bacteria are also known to naturally release spherical membrane vesicles (MVs) that are involved in various biological functions such as quorum sensing, pathogenesis, and host immunomodulation. However, the production of MVs by LAB and their effects on host immunity remain poorly understood. In this study, we investigated the MV production by Lactobacillus sakei subsp. sakei NBRC15893 isolated from kimoto, the traditional seed mash used for brewing sake. MVs were separated from the culture broth of L. sakei NBRC15893 through filtration and density gradient ultracentrifugation and were observed by transmission electron microscopy. The MVs showed a spherical morphology, with a diameter of 30-400 nm, and contained proteins and nucleic acids. In addition, both the LAB cells and purified MVs promoted IgA production by murine Peyer's patch cells. This MV- and cell-induced IgA production was suppressed by neutralization of Toll-like receptor (TLR) 2, which recognizes cell wall components of gram-positive bacteria, using an anti-TLR2 antibody. Collectively, our results indicate that MVs released from L. sakei NBRC15893 enhance IgA production by activating host TLR2 signaling through its cell wall components. Thus, it is important to consider novel interactions between gut microbiota and hosts via MVs, and MVs derived from probiotic bacteria could have promising applications as safe adjuvants.

14.
Biosci Biotechnol Biochem ; 81(8): 1612-1618, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28471330

RESUMEN

l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.


Asunto(s)
Proteínas Fúngicas/metabolismo , Subunidades de Proteína/metabolismo , Rhizomucor/enzimología , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Xilitol/metabolismo , Xilulosa/metabolismo , Arabinosa/metabolismo , Clonación Molecular , Coenzimas/metabolismo , Dihidroxiacetona/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Proteínas Fúngicas/genética , Expresión Génica , Glucosa/metabolismo , Cinética , Manitol/metabolismo , NADP/metabolismo , Sistemas de Lectura Abierta , Filogenia , Multimerización de Proteína , Subunidades de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizomucor/química , Rhizomucor/clasificación , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/genética , Xilosa/metabolismo
15.
Biosci Microbiota Food Health ; 36(1): 17-25, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243547

RESUMEN

Co-culture of lactic acid bacteria (LAB) and yeast induces specific responses that are not observed in pure culture. Gene expression profiles of Lactobacillus paracasei ATCC 334 co-cultured with Saccharomyces cerevisiae IFO 0216 were analyzed by DNA microarray, and the responses induced by direct contact with the yeast cells were investigated. Coating the LAB cells with recombinant DnaK, which acts as an adhesive protein between LAB and yeast cells, enhanced the ratio of adhesion of the LAB cells to the yeast cells. The signals induced by direct contact were clarified by removal of the LAB cells unbound to the yeast cells. The genes induced by direct contact with heat-inactivated yeast cells were very similar to both those induced by the intact yeast cells and those induced by a soluble mannan. The top 20 genes upregulated by direct contact with the heat-inactivated yeast cells mainly encoded proteins related to exopolysaccharide synthesis, modification of surface proteins, and transport systems. In the case of the most upregulated gene, LSEI_0669, encoding a protein that has a region homologous to polyprenyl glycosylphosphotransferase, the expression level was upregulated 7.6-, 11.0-, and 8.8-fold by the heat-inactivated yeast cells, the intact yeast cells, and the soluble mannan, respectively, whereas it was only upregulated 1.8-fold when the non-adherent LAB cells were not removed before RNA extraction. Our results indicated that the LAB responded to direct contact with the yeast cells through recognition of mannan on the surface of the yeast.

16.
J Biosci Bioeng ; 119(1): 57-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25041710

RESUMEN

Rhizomucor pusillus NBRC 4578 efficiently produces ethanol from lignocellulosic biomass because of its ability to ferment not only d-glucose, but also d-xylose. When the strain was cultivated on d-xylose, ethanol was gradually formed in the culture medium with a decrease in d-xylose and the simultaneous accumulation of xylitol, which suggested that the strain catabolized d-xylose with d-xylose reductase (XR) and xylitol dehydrogenase (XDH). XR (RpXR) was purified to homogeneity from the crude extract prepared from the mycelia of the strain grown on d-xylose. The purified enzyme was found to be NADPH-dependent and prefer pentoses such as d-xylose, d-ribose, and l-arabinose as substrates. Isolation of the genomic DNA and cDNA of the xyl1 gene encoding RpXR revealed that the gene was interrupted by two introns and the exon of the gene encoded a protein composed of 322 amino acids with a Mr of 36,724. Phylogenetic analysis showed that RpXR is more related to 4-dihydromethyltrisporate dehydrogenases from Mucoraseae fungi rather than the previously reported fungal XRs. Quantitative real-time PCR indicated that transcription of the xyl1 gene was marked in the presence of d-xylose and l-arabinose, but was week in the presence of d-glucose. These biochemical and expression analyses suggest that RpXR is involved in the catabolism of l-arabinose as well as d-xylose. This is the first report of the purification, characterization, and gene cloning of XR from zygomycetous fungi.


Asunto(s)
Aldehído Reductasa/aislamiento & purificación , Aldehído Reductasa/metabolismo , Pentosas/metabolismo , Rhizomucor/enzimología , Rhizomucor/metabolismo , Aldehído Reductasa/genética , Arabinosa/metabolismo , Clonación Molecular , D-Xilulosa Reductasa/aislamiento & purificación , D-Xilulosa Reductasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Evolución Molecular , Glucosa/metabolismo , NADP/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Rhizomucor/genética , Ribosa/genética , Xilitol/metabolismo , Xilosa/metabolismo
17.
Biosci Biotechnol Biochem ; 78(11): 1943-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25082263

RESUMEN

The zygomycetous fungus Rhizomucor pusillus NBRC 4578 is able to ferment not only d-glucose but also d-xylose into ethanol. Xylitol dehydrogenase from R. pusillus NBRC 4578 (RpXDH), which catalyzes the second step of d-xylose metabolism, was purified, and its enzymatic properties were characterized. The purified RpXDH preferred NAD(+) as its coenzyme and showed substrate specificity for xylitol, d-sorbitol, and ribitol. cDNA cloning of xyl2 gene encoding RpXDH revealed that the gene included a coding sequence of 1,092 bp with a molecular mass of 39,185 kDa. Expression of the xyl2 in R. pusillus NBRC 4578 was induced by d-xylose, and the expression levels were increased with accumulation of xylitol. The xyl2 gene was expressed in Escherichia coli, and coenzyme preference of the recombinant RpXDH was reversed from NAD(+) to NADP(+) in the double mutant D205A/I206R by site-directed mutagenesis.


Asunto(s)
NAD/metabolismo , Oxidorreductasas/genética , Rhizomucor/enzimología , Clonación Molecular , Coenzimas/metabolismo , Modelos Biológicos , Estructura Molecular , Oxidorreductasas/química , Rhizomucor/química , Xilosa/química
18.
FEMS Microbiol Lett ; 360(1): 51-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25163569

RESUMEN

D-Xylulokinase catalyzes the phosphorylation of D-xylulose in the final step of the pentose catabolic pathway to form d-xylulose-5-phosphate. The D-xylulokinase activity was found to be induced by both D-xylose and L-arabinose, as well as some of the other enzymes involved in the pentose catabolism, in the D-xylose-fermenting zygomycetous fungus, Mucor circinelloides NBRC 4572. The putative gene, xyl3, which may encode D-xylulokinase, was detected in the genome sequence of this strain. The amino acid sequence deduced from the gene was more similar to D-xylulokinases from an animal origin than from other fungi. The recombinant enzyme was purified from the E. coli transformant expressing xyl3 and then characterized. The ATP-dependent phosphorylative activity of the enzyme was the highest toward D-xylulose. Its kinetic parameters were determined as Km (D-xylulose) = 0.29 mM and Km (ATP) = 0.51 mM, indicating that the xyl3 gene encoded D-xylulokinase (McXK). Western blot analysis revealed that McXK was induced by L-arabinose as well as D-xylose and the induction was repressed in the presence of D-glucose, suggesting that the enzyme may be involved in the catabolism of D-xylose and L-arabinose and is subject to carbon catabolite repression in this fungus. This is the first study on D-xylulokinase from zygomycetous fungi.


Asunto(s)
Mucor/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Xilosa/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Etanol , Fermentación , Datos de Secuencia Molecular , Mucor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
19.
Anal Biochem ; 428(2): 143-9, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22750517

RESUMEN

To determine the L-methionine (L-Met) concentration in an extract from dried blood spots (DBSs) for newborn mass screening for homocystinuria (HCU) due to cystathionine ß-synthase (CBS) deficiency, a new fluorometric microplate assay using a methionine-specific dehydrogenase (MetDH) and the diaphorase/reazusrin system was established. We created by directed mutagenesis an NAD⁺-dependent MetDH from phenylalanine dehydrogenase (PheDH) showing higher substrate specificity toward L-Met than L-phenylalanine (L-Phe). However, it also exhibited notable activity for branched-chain amino acids (BCAAs). BCAAs in blood clearly interfered with the determination of L-Met in the DBS specimens using a single application of MetDH. To measure L-Met selectively, we used a branched-chain amino acid transaminase (BCAT) to eliminate the BCAAs in the specimens and screened for a BCAT with low activity toward L-Met. In microplate assays using MetDH, pretreatment of specimens with the BCAT from Lactobacillus delbrueckii subsp. bulgaricus coupled with L-glutamate oxidase minimized the effects of BCAAs, and L-Met concentrations were determined with high accuracy even at elevated BCAA concentrations. This enzymatic end-point assay is suitable for determining L-Met concentrations in DBSs for neonatal screening for HCU due to CBS deficiency.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Cistationina betasintasa/deficiencia , Fluorometría/métodos , Homocistinuria/diagnóstico , Homocistinuria/enzimología , Metionina/sangre , Calibración , Cromatografía Líquida de Alta Presión , Cistationina betasintasa/metabolismo , Pruebas con Sangre Seca , Pruebas de Enzimas , Fluorescencia , Homocistinuria/sangre , Humanos , Reproducibilidad de los Resultados , Transaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...