Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37292656

RESUMEN

Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites and different developmental stages. Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults and Japanese adults. The neuromarker demonstrated significant generalization for children and adolescents. We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.

2.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034620

RESUMEN

Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites (U.S., Belgium, and Japan) and different developmental stages (children and adolescents). Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults (area under the curve [AUC] = 0.70) and Japanese adults (AUC = 0.81). The neuromarker demonstrated significant generalization for children (AUC = 0.66) and adolescents (AUC = 0.71; all P<0.05, family-wise-error corrected). We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. These FCs largely centered on social brain regions such as the amygdala, hippocampus, dorsomedial and ventromedial prefrontal cortices, and temporal cortices. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.

3.
Psychiatry Clin Neurosci ; 77(6): 345-354, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36905180

RESUMEN

AIM: Increasing evidence suggests that psychiatric disorders are linked to alterations in the mesocorticolimbic dopamine-related circuits. However, the common and disease-specific alterations remain to be examined in schizophrenia (SCZ), major depressive disorder (MDD), and autism spectrum disorder (ASD). Thus, this study aimed to examine common and disease-specific features related to mesocorticolimbic circuits. METHODS: This study included 555 participants from four institutes with five scanners: 140 individuals with SCZ (45.0% female), 127 individuals with MDD (44.9%), 119 individuals with ASD (15.1%), and 169 healthy controls (HC) (34.9%). All participants underwent resting-state functional magnetic resonance imaging. A parametric empirical Bayes approach was adopted to compare estimated effective connectivity among groups. Intrinsic effective connectivity focusing on the mesocorticolimbic dopamine-related circuits including the ventral tegmental area (VTA), shell and core parts of the nucleus accumbens (NAc), and medial prefrontal cortex (mPFC) were examined using a dynamic causal modeling analysis across these psychiatric disorders. RESULTS: The excitatory shell-to-core connectivity was greater in all patients than in the HC group. The inhibitory shell-to-VTA and shell-to-mPFC connectivities were greater in the ASD group than in the HC, MDD, and SCZ groups. Furthermore, the VTA-to-core and VTA-to-shell connectivities were excitatory in the ASD group, while those connections were inhibitory in the HC, MDD, and SCZ groups. CONCLUSION: Impaired signaling in the mesocorticolimbic dopamine-related circuits could be an underlying neuropathogenesis of various psychiatric disorders. These findings will improve the understanding of unique neural alternations of each disorder and will facilitate identification of effective therapeutic targets.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Trastornos Mentales , Humanos , Femenino , Masculino , Trastorno Depresivo Mayor/diagnóstico por imagen , Dopamina , Teorema de Bayes , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Trastornos Mentales/diagnóstico por imagen
4.
Schizophr Bull ; 49(4): 933-943, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36919870

RESUMEN

BACKGROUND AND HYPOTHESIS: Dynamics of the distributed sets of functionally synchronized brain regions, known as large-scale networks, are essential for the emotional state and cognitive processes. However, few studies were performed to elucidate the aberrant dynamics across the large-scale networks across multiple psychiatric disorders. In this paper, we aimed to investigate dynamic aspects of the aberrancy of the causal connections among the large-scale networks of the multiple psychiatric disorders. STUDY DESIGN: We applied dynamic causal modeling (DCM) to the large-sample multi-site dataset with 739 participants from 4 imaging sites including 4 different groups, healthy controls, schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD), to compare the causal relationships among the large-scale networks, including visual network, somatomotor network (SMN), dorsal attention network (DAN), salience network (SAN), limbic network (LIN), frontoparietal network, and default mode network. STUDY RESULTS: DCM showed that the decreased self-inhibitory connection of LIN was the common aberrant connection pattern across psychiatry disorders. Furthermore, increased causal connections from LIN to multiple networks, aberrant self-inhibitory connections of DAN and SMN, and increased self-inhibitory connection of SAN were disorder-specific patterns for SCZ, MDD, and BD, respectively. CONCLUSIONS: DCM revealed that LIN was the core abnormal network common to psychiatric disorders. Furthermore, DCM showed disorder-specific abnormal patterns of causal connections across the 7 networks. Our findings suggested that aberrant dynamics among the large-scale networks could be a key biomarker for these transdiagnostic psychiatric disorders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Trastorno Bipolar/diagnóstico por imagen , Mapeo Encefálico/métodos
5.
J Affect Disord ; 326: 262-266, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717028

RESUMEN

BACKGROUND: Recently, we developed a generalizable brain network marker for the diagnosis of major depressive disorder (MDD) across multiple imaging sites using resting-state functional magnetic resonance imaging. Here, we applied this brain network marker to newly acquired data to verify its test-retest reliability and anterograde generalization performance for new patients. METHODS: We tested the sensitivity and specificity of our brain network marker of MDD using data acquired from 43 new patients with MDD as well as new data from 33 healthy controls (HCs) who participated in our previous study. To examine the test-retest reliability of our brain network marker, we evaluated the intraclass correlation coefficients (ICCs) between the brain network marker-based classifier's output (probability of MDD) in two sets of HC data obtained at an interval of approximately 1 year. RESULTS: Test-retest correlation between the two sets of the classifier's output (probability of MDD) from HCs exhibited moderate reliability with an ICC of 0.45 (95 % confidence interval,0.13-0.68). The classifier distinguished patients with MDD and HCs with an accuracy of 69.7 % (sensitivity, 72.1 %; specificity, 66.7 %). LIMITATIONS: The data of patients with MDD in this study were cross-sectional, and the clinical significance of the marker, such as whether it is a state or trait marker of MDD and its association with treatment responsiveness, remains unclear. CONCLUSIONS: The results of this study reaffirmed the test-retest reliability and generalization performance of our brain network marker for the diagnosis of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Reproducibilidad de los Resultados , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Encéfalo
6.
Cortex ; 145: 295-314, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34775266

RESUMEN

Posttraumatic Stress Disorder (PTSD) symptomatology disrupts inhibitory control during sustained attention. However, PTSD-related inhibitory control deficits are partially ameliorated when punishments and rewards are administered based on task performance, which suggests motivational processes contribute to these deficits. Additionally, PTSD may also impair error-related cognitive control following inhibitory control failures as measured by post-error slowing (PES). However, it remains unclear if motivational processes also contribute to impaired error-related cognitive control in PTSD. Using an incentivized sustained attention paradigm in two independent samples of post-9/11 veterans, we characterized PTSD-related differences in PES during both non-motivated conditions (no task-based incentives) and motivated conditions (task-based rewards and punishments). In Study 1 (n = 139), PTSD symptom severity was modestly associated with smaller PES in the non-motivated condition, whereas no PTSD-related association was observed in the motivated condition. In Study 2 (n = 35), we replicated and extended these results by using fMRI to characterize modulation of the triple network system comprised of the Salience Network (SN), Frontoparietal Control Network (FPCN), and Default Mode Network (DMN). In the non-motivated condition, PTSD symptom severity was associated with non-specific SN and FPCN hyperactivation during both failed and successful inhibitory control. In the motivated condition, PTSD symptom severity was associated with greater focal activation of both the SN and Superior Parietal Lobule cluster (an FPCN node) during punished inhibitory control failures and weaker SN-FPCN connectivity during rewarded inhibitory control successes. Together, these results suggest that dysregulated motivational processes in PTSD may contribute to impaired error-related cognitive control.


Asunto(s)
Trastornos por Estrés Postraumático , Encéfalo , Cognición , Humanos , Imagen por Resonancia Magnética , Castigo , Recompensa
7.
Hum Brain Mapp ; 42(16): 5278-5287, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34402132

RESUMEN

Multisite magnetic resonance imaging (MRI) is increasingly used in clinical research and development. Measurement biases-caused by site differences in scanner/image-acquisition protocols-negatively influence the reliability and reproducibility of image-analysis methods. Harmonization can reduce bias and improve the reproducibility of multisite datasets. Herein, a traveling-subject (TS) dataset including 56 T1-weighted MRI scans of 20 healthy participants in three different MRI procedures-20, 19, and 17 subjects in Procedures 1, 2, and 3, respectively-was considered to compare the reproducibility of TS-GLM, ComBat, and TS-ComBat harmonization methods. The minimum participant count required for harmonization was determined, and the Cohen's d between different MRI procedures was evaluated as a measurement-bias indicator. The measurement-bias reduction realized with different methods was evaluated by comparing test-retest scans for 20 healthy participants. Moreover, the minimum subject count for harmonization was determined by comparing test-retest datasets. The results revealed that TS-GLM and TS-ComBat reduced measurement bias by up to 85 and 81.3%, respectively. Meanwhile, ComBat showed a reduction of only 59.0%. At least 6 TSs were required to harmonize data obtained from different MRI scanners, complying with the imaging protocol predetermined for multisite investigations and operated with similar scan parameters. The results indicate that TS-based harmonization outperforms ComBat for measurement-bias reduction and is optimal for MRI data in well-prepared multisite investigations. One drawback is the small sample size used, potentially limiting the applicability of ComBat. Investigation on the number of subjects needed for a large-scale study is an interesting future problem.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Estudios Multicéntricos como Asunto , Neuroimagen , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Estudios Multicéntricos como Asunto/instrumentación , Estudios Multicéntricos como Asunto/métodos , Estudios Multicéntricos como Asunto/normas , Neuroimagen/instrumentación , Neuroimagen/métodos , Neuroimagen/normas
8.
Sci Data ; 8(1): 227, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462444

RESUMEN

Machine learning classifiers for psychiatric disorders using resting-state functional magnetic resonance imaging (rs-fMRI) have recently attracted attention as a method for directly examining relationships between neural circuits and psychiatric disorders. To develop accurate and generalizable classifiers, we compiled a large-scale, multi-site, multi-disorder neuroimaging database. The database comprises resting-state fMRI and structural images of the brain from 993 patients and 1,421 healthy individuals, as well as demographic information such as age, sex, and clinical rating scales. To harmonize the multi-site data, nine healthy participants ("traveling subjects") visited the sites from which the above datasets were obtained and underwent neuroimaging with 12 scanners. All participants consented to having their data shared and analyzed at multiple medical and research institutions participating in the project, and 706 patients and 1,122 healthy individuals consented to having their data disclosed. Finally, we have published four datasets: 1) the SRPBS Multi-disorder Connectivity Dataset 2), the SRPBS Multi-disorder MRI Dataset (restricted), 3) the SRPBS Multi-disorder MRI Dataset (unrestricted), and 4) the SRPBS Traveling Subject MRI Dataset.


Asunto(s)
Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Imagen por Resonancia Magnética , Trastornos Mentales/diagnóstico por imagen , Neuroimagen , Adulto , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Sci Rep ; 11(1): 14883, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290318

RESUMEN

A common behavioral marker of optimal attention focus is faster responses or reduced response variability. Our previous study found two dominant brain states during sustained attention, and these states differed in their behavioral accuracy and reaction time (RT) variability. However, RT distributions are often positively skewed with a long tail (i.e., reflecting occasional slow responses). Therefore, a larger RT variance could also be explained by this long tail rather than the variance around an assumed normal distribution (i.e., reflecting pervasive response instability based on both faster and slower responses). Resolving this ambiguity is important for better understanding mechanisms of sustained attention. Here, using a large dataset of over 20,000 participants who performed a sustained attention task, we first demonstrated the utility of the exGuassian distribution that can decompose RTs into a strategy factor, a variance factor, and a long tail factor. We then investigated which factor(s) differed between the two brain states using fMRI. Across two independent datasets, results indicate unambiguously that the variance factor differs between the two dominant brain states. These findings indicate that 'suboptimal' is different from 'slow' at the behavior and neural level, and have implications for theoretically and methodologically guiding future sustained attention research.


Asunto(s)
Atención/fisiología , Conducta/fisiología , Encéfalo/fisiología , Tiempo de Reacción/fisiología , Adolescente , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Niño , Conjuntos de Datos como Asunto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Front Psychiatry ; 12: 667881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177657

RESUMEN

Large-scale neuroimaging data acquired and shared by multiple institutions are essential to advance neuroscientific understanding of pathophysiological mechanisms in psychiatric disorders, such as major depressive disorder (MDD). About 75% of studies that have applied machine learning technique to neuroimaging have been based on diagnoses by clinicians. However, an increasing number of studies have highlighted the difficulty in finding a clear association between existing clinical diagnostic categories and neurobiological abnormalities. Here, using resting-state functional magnetic resonance imaging, we determined and validated resting-state functional connectivity related to depression symptoms that were thought to be directly related to neurobiological abnormalities. We then compared the resting-state functional connectivity related to depression symptoms with that related to depression diagnosis that we recently identified. In particular, for the discovery dataset with 477 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a brain network prediction model of depression symptoms (Beck Depression Inventory-II [BDI] score). The prediction model significantly predicted BDI score for an independent validation dataset with 439 participants from 4 different imaging sites. Finally, we found 3 common functional connections between those related to depression symptoms and those related to MDD diagnosis. These findings contribute to a deeper understanding of the neural circuitry of depressive symptoms in MDD, a hetero-symptomatic population, revealing the neural basis of MDD.

11.
Neuroimage ; 236: 118072, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33882346

RESUMEN

In the search for brain markers of optimal attentional focus, the mainstream approach has been to first define attentional states based on behavioral performance, and to subsequently investigate "neural correlates" associated with these performance variations. However, this approach constrains the range of contexts in which attentional states can be operationalized by relying on overt behavior, and assumes a one-to-one correspondence between behavior and brain state. Here, we reversed the logic of these previous studies and sought to identify behaviorally-relevant brain states based solely on brain activity, agnostic to behavioral performance. In four independent datasets, we found that the same two brain states were dominant during a sustained attention task. One state was behaviorally optimal, with higher accuracy and stability, but a greater tendency to mind wander (State1). The second state was behaviorally suboptimal, with lower accuracy and instability (State2). We further demonstrate how these brain states were impacted by motivation and attention-deficit/hyperactivity disorder (ADHD). Individuals with ADHD spent more time in suboptimal State2 and less time in optimal State1 than healthy controls. Motivation overcame the suboptimal behavior associated with State2. Our study provides compelling evidence for the existence of two attentional states from the sole viewpoint of brain activity.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Atención/fisiología , Encéfalo/fisiopatología , Neuroimagen Funcional/métodos , Motivación/fisiología , Red Nerviosa/fisiopatología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Conjuntos de Datos como Asunto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
12.
Neuroimage Clin ; 30: 102600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33741307

RESUMEN

Psychiatric and neurological disorders are afflictions of the brain that can affect individuals throughout their lifespan. Many brain magnetic resonance imaging (MRI) studies have been conducted; however, imaging-based biomarkers are not yet well established for diagnostic and therapeutic use. This article describes an outline of the planned study, the Brain/MINDS Beyond human brain MRI project (BMB-HBM, FY2018 ~ FY2023), which aims to establish clinically-relevant imaging biomarkers with multi-site harmonization by collecting data from healthy traveling subjects (TS) at 13 research sites. Collection of data in psychiatric and neurological disorders across the lifespan is also scheduled at 13 sites, whereas designing measurement procedures, developing and analyzing neuroimaging protocols, and databasing are done at three research sites. A high-quality scanning protocol, Harmonization Protocol (HARP), was established for five high-quality 3 T scanners to obtain multimodal brain images including T1 and T2-weighted, resting-state and task functional and diffusion-weighted MRI. Data are preprocessed and analyzed using approaches developed by the Human Connectome Project. Preliminary results in 30 TS demonstrated cortical thickness, myelin, functional connectivity measures are comparable across 5 scanners, suggesting sensitivity to subject-specific connectome. A total of 75 TS and more than two thousand patients with various psychiatric and neurological disorders are scheduled to participate in the project, allowing a mixed model statistical harmonization. The HARP protocols are publicly available online, and all the imaging, demographic and clinical information, harmonizing database will also be made available by 2024. To the best of our knowledge, this is the first project to implement a prospective, multi-level harmonization protocol with multi-site TS data. It explores intractable brain disorders across the lifespan and may help to identify the disease-specific pathophysiology and imaging biomarkers for clinical practice.


Asunto(s)
Encefalopatías , Conectoma , Encéfalo/diagnóstico por imagen , Humanos , Longevidad , Imagen por Resonancia Magnética , Estudios Prospectivos
13.
Neuroimage ; 229: 117610, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418073

RESUMEN

Sustained attention is a fundamental cognitive process that can be decoupled from distinct external events, and instead emerges from ongoing intrinsic large-scale network interdependencies fluctuating over seconds to minutes. Lapses of sustained attention are commonly associated with the subjective experience of mind wandering and task-unrelated thoughts. Little is known about how fluctuations in information processing underpin sustained attention, nor how mind wandering undermines this information processing. To overcome this, we used fMRI to investigate brain activity during subjects' performance (n=29) of a cognitive task that was optimized to detect and isolate continuous fluctuations in both sustained attention (via motor responses) and task-unrelated thought (via subjective reports). We then investigated sustained attention with respect to global attributes of communication throughout the functional architecture, i.e., by the segregation and integration of information processing across large scale-networks. Further, we determined how task-unrelated thoughts related to these global information processing markers of sustained attention. The results show that optimal states of sustained attention favor both enhanced segregation and reduced integration of information processing in several task-related large-scale cortical systems with concurrent reduced segregation and enhanced integration in the auditory and sensorimotor systems. Higher degree of mind wandering was associated with losses of the favored segregation and integration of specific subsystems in our sustained attention model. Taken together, we demonstrate that intrinsic ongoing neural fluctuations are characterized by two converging communication modes throughout the global functional architecture, which give rise to optimal and suboptimal attention states. We discuss how these results might potentially serve as neural markers for clinically abnormal attention. SIGNIFICANCE STATEMENT: Most of our brain activity unfolds in an intrinsic manner, i.e., is unrelated to immediate external stimuli or tasks. Here we use a gradual continuous performance task to map this intrinsic brain activity to both fluctuations of sustained attention and mind wandering. We show that optimal sustained attention is associated with concurrent segregation and integration of information processing within many large-scale brain networks, while task-unrelated thought is related to sub-optimal information processing in specific subsystems of this sustained attention network model. These findings provide a novel information processing framework for investigating the neural basis of sustained attention, by mapping attentional fluctuations to genuinely global features of intra-brain communication.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Pensamiento/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Estimulación Luminosa/métodos
14.
PLoS Biol ; 18(12): e3000966, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284797

RESUMEN

Many studies have highlighted the difficulty inherent to the clinical application of fundamental neuroscience knowledge based on machine learning techniques. It is difficult to generalize machine learning brain markers to the data acquired from independent imaging sites, mainly due to large site differences in functional magnetic resonance imaging. We address the difficulty of finding a generalizable marker of major depressive disorder (MDD) that would distinguish patients from healthy controls based on resting-state functional connectivity patterns. For the discovery dataset with 713 participants from 4 imaging sites, we removed site differences using our recently developed harmonization method and developed a machine learning MDD classifier. The classifier achieved an approximately 70% generalization accuracy for an independent validation dataset with 521 participants from 5 different imaging sites. The successful generalization to a perfectly independent dataset acquired from multiple imaging sites is novel and ensures scientific reproducibility and clinical applicability.


Asunto(s)
Mapeo Encefálico/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Adulto , Algoritmos , Encéfalo/fisiopatología , Bases de Datos Factuales , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Vías Nerviosas , Reproducibilidad de los Resultados , Descanso/fisiología
15.
PLoS Biol ; 17(4): e3000042, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998673

RESUMEN

When collecting large amounts of neuroimaging data associated with psychiatric disorders, images must be acquired from multiple sites because of the limited capacity of a single site. However, site differences represent a barrier when acquiring multisite neuroimaging data. We utilized a traveling-subject dataset in conjunction with a multisite, multidisorder dataset to demonstrate that site differences are composed of biological sampling bias and engineering measurement bias. The effects on resting-state functional MRI connectivity based on pairwise correlations because of both bias types were greater than or equal to psychiatric disorder differences. Furthermore, our findings indicated that each site can sample only from a subpopulation of participants. This result suggests that it is essential to collect large amounts of neuroimaging data from as many sites as possible to appropriately estimate the distribution of the grand population. Finally, we developed a novel harmonization method that removed only the measurement bias by using a traveling-subject dataset and achieved the reduction of the measurement bias by 29% and improvement of the signal-to-noise ratios by 40%. Our results provide fundamental knowledge regarding site effects, which is important for future research using multisite, multidisorder resting-state functional MRI data.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Encéfalo/fisiopatología , Análisis de Datos , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Reproducibilidad de los Resultados , Sesgo de Selección , Relación Señal-Ruido
16.
Cereb Cortex ; 27(10): 4960-4970, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922830

RESUMEN

Advances in functional magnetic resonance imaging have made it possible to provide real-time feedback on brain activity. Neurofeedback has been applied to therapeutic interventions for psychiatric disorders. Since many studies have shown that most psychiatric disorders exhibit abnormal brain networks, a novel experimental paradigm named connectivity neurofeedback, which can directly modulate a brain network, has emerged as a promising approach to treat psychiatric disorders. Here, we investigated the hypothesis that connectivity neurofeedback can induce the aimed direction of change in functional connectivity, and the differential change in cognitive performance according to the direction of change in connectivity. We selected the connectivity between the left primary motor cortex and the left lateral parietal cortex as the target. Subjects were divided into 2 groups, in which only the direction of change (an increase or a decrease in correlation) in the experimentally manipulated connectivity differed between the groups. As a result, subjects successfully induced the expected connectivity changes in either of the 2 directions. Furthermore, cognitive performance significantly and differentially changed from preneurofeedback to postneurofeedback training between the 2 groups. These findings indicate that connectivity neurofeedback can induce the aimed direction of change in connectivity and also a differential change in cognitive performance.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Vías Nerviosas/fisiología , Neurorretroalimentación/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
17.
Front Hum Neurosci ; 9: 160, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25870552

RESUMEN

Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD) signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.e., temporal correlation between two regions) is increased and preserved for a long time when two regions are simultaneously activated or deactivated. Using the connectivity-neurofeedback training paradigm, subjects successfully learned to increase the correlation of activity between the lateral parietal and primary motor areas, regions that belong to different intrinsic networks and negatively correlated before training under the resting conditions. Furthermore, whole-brain hypothesis-free analysis as well as functional network analyses demonstrated that the correlation in the resting state between these areas as well as the correlation between the intrinsic networks that include the areas increased for at least 2 months. These findings indicate that the connectivity-neurofeedback training can cause long-term changes in intrinsic connectivity and that intrinsic networks can be shaped by experience-driven modulation of regional correlation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...