Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Toxicol Res ; 40(3): 441-448, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38911546

RESUMEN

Methylmercury is an environmental pollutant that can induce serious central nervous system damage. Its ubiquitous presence in the environment in trace amounts has raised concerns about potential adverse effects on human health. Although many studies have evaluated the effects of methylmercury on neural development in fetal and neonatal mice, there has been less focus on studies using adolescent mice. Therefore, in this study, the effects of methylmercury on brain neurodevelopment and maturation were evaluated by various neurobehavioral trials using adolescent mice exposed to 30 ppm methylmercuric chloride (approximately 24 ppm methylmercury) for up to 8 weeks. Under these administration conditions, weight gain in adolescent mice was unaffected by methylmercury exposure. Furthermore, methylmercury exposure in adolescent mice had no effect on sociability as assessed by the social interaction test, impulsivity as assessed by the cliff avoidance reaction test, depressive behavior as assessed by the tail-suspension test, or locomotor activity as assessed using the Supermex system. In contrast, short-term memory assessed by the Y-maze test, as well as long-term memory assessed by novel object recognition and passive avoidance tests, revealed impairments induced by methylmercury exposure in adolescent mice. These results suggest that long-term exposure to methylmercury during adolescence potentially impairs memory function, and the nervous pathway of brain areas involved in learning and memory are particularly vulnerable to the adverse effects of methylmercury. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00239-y.

2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612696

RESUMEN

Methylmercury is a known environmental pollutant that exhibits severe neurotoxic effects. However, the mechanism by which methylmercury causes neurotoxicity remains unclear. To date, we have found that oxidative stress-induced growth inhibitor 1 (OSGIN1), which is induced by oxidative stress and DNA damage, is also induced by methylmercury. Therefore, in this study, we investigated the relationship between methylmercury toxicity and the induction of OSGIN1 expression using C17.2 cells, which are mouse brain neural stem cells. Methylmercury increased both OSGIN1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, these increases were almost entirely canceled out by pretreatment with actinomycin D, a transcription inhibitor. Furthermore, similar results were obtained from cells in which expression of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) was suppressed, indicating that methylmercury induces OSGIN1 expression via NRF2. Methylmercury causes neuronal cell death by inducing apoptosis. Therefore, we next investigated the role of OSGIN1 in methylmercury-induced neuronal cell death using the activation of caspase-3, which is involved in apoptosis induction, as an indicator. As a result, the increase in cleaved caspase-3 (activated form) induced by methylmercury exposure was decreased by suppressing OSGIN1, and the overexpression of OSGIN1 further promoted the increase in cleaved caspase-3 caused by methylmercury. These results suggest, for the first time, that OSGIN1 is a novel factor involved in methylmercury toxicity, and methylmercury induces apoptosis in C17.2 cells through the induction of OSGIN1 expression by NRF2.


Asunto(s)
Compuestos de Metilmercurio , Células-Madre Neurales , Síndromes de Neurotoxicidad , Animales , Ratones , Caspasa 3/genética , Compuestos de Metilmercurio/toxicidad , Factor 2 Relacionado con NF-E2/genética , Apoptosis
3.
Proc Natl Acad Sci U S A ; 120(6): e2205426120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730190

RESUMEN

In neurons, many membrane proteins, synthesized in cell bodies, must be efficiently delivered to axons to influence neuronal connectivity, synaptic communication, and repair. Previously, we found that axonal targeting of TrkA neurotrophin receptors in sympathetic neurons occurs via an atypical transport mechanism called transcytosis, which relies on TrkA interactions with PTP1B, a protein tyrosine phosphatase. Here, we generated TrkAR685A mice, where TrkA receptor signaling is preserved, but its PTP1B-dependent transcytosis is disrupted to show that this mode of axonal transport is essential for sympathetic neuron development and autonomic function. TrkAR685A mice have decreased axonal TrkA levels in vivo, loss of sympathetic neurons, and reduced innervation of targets. The neuron loss and diminished target innervation phenotypes are specifically restricted to the developmental period when sympathetic neurons are known to rely on the TrkA ligand, nerve growth factor, for trophic support. Postnatal TrkAR685A mice exhibit reduced pupil size and eyelid ptosis, indicative of sympathetic dysfunction. Furthermore, we also observed a significant loss of TrkA-expressing nociceptive neurons in the dorsal root ganglia during development in TrkAR685A mice, suggesting that transcytosis might be a general mechanism for axonal targeting of TrkA receptors. Together, these findings establish the necessity of transcytosis in supplying TrkA receptors to axons, specifically during development, and highlight the physiological relevance of this axon targeting mechanism in the nervous system.


Asunto(s)
Neuronas , Receptor trkA , Ratones , Animales , Receptor trkA/genética , Receptor trkA/metabolismo , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Axones/metabolismo , Transcitosis , Sistema Nervioso Simpático/metabolismo
4.
Biochem Biophys Res Commun ; 639: 29-35, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36463758

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by environmental contaminants such as dioxins and polycyclic aromatic hydrocarbons. Following ligand binding, AhR binds to xenobiotic responsive elements and modulates the transcription of AhR target genes. Multiple studies have shown that AhR plays important roles in a range of cancer cells and is attracting attention as a therapeutic target for cancer treatment. We have previously reported that AhR agonists inhibit tumorsphere formation in an AhR-dependent manner in the MCF-7 breast cancer cell line. In the present study, we found that FDI-6, an inhibitor of the transcription factor Forkhead Box M1 (FOXM1) induced the mRNA expression of AhR target genes, nuclear translocation of AhR, and transcriptional activity of AhR. In addition, FDI-6 dose-dependently reduced the mRNA expression of FOXM1-regulated genes in AhR-expressing MCF-7 cells, although not in AhR-deficient MCF-7 cells. Furthermore, FDI-6 was found to suppress tumorsphere formation via the AhR in MCF-7 cells and HepG2 human liver cancer cell line. On the basis of the findings of this study, we show that FDI-6, a FOXM1 inhibitor, functions as an AhR agonist, and suppresses tumorsphere formation via the AhR.


Asunto(s)
Citocromo P-450 CYP1A1 , Receptores de Hidrocarburo de Aril , Humanos , Línea Celular Tumoral , Citocromo P-450 CYP1A1/genética , Proteína Forkhead Box M1/genética , Ligandos , Células MCF-7 , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292946

RESUMEN

Cancer stem cells (CSCs) contribute to the drug resistance, recurrence, and metastasis of breast cancers. Recently, we demonstrated that HER2 overexpression increases mammosphere formation via the activation of aryl hydrocarbon receptor (AHR). In this study, the objective was to identify the mechanism underlying mammosphere maintenance mediated by HER2 signaling-activated AHR. We compared the chromatin structure of AHR-knockout (AHRKO) HER2-overexpressing MCF-7 (HER2-5) cells with that of wild-type HER2-5 cells; subsequently, we identified TP63, a stemness factor, as a potential target gene of AHR. ΔNp63 mRNA and protein levels were higher in HER2-5 cells than in HER2-5/AHRKO cells. Activation of HER2/HER3 signaling by heregulin treatment increased ΔNp63 mRNA levels, and its induction was decreased by AHR knockdown in HER2-5 cells. The results of the chromatin immunoprecipitation assay revealed an interaction between AHR and the intronic region of TP63, which encodes ΔNp63. A luciferase reporter gene assay with the intronic region of TP63 showed that AHR expression increased reporter activity. Collectively, our findings suggest that HER2-activated AHR upregulates ΔNp63 expression and that this signaling cascade is involved in CSC maintenance in HER2-expressing breast cancers.


Asunto(s)
Neoplasias de la Mama , Receptores de Hidrocarburo de Aril , Humanos , Femenino , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Neurregulina-1/metabolismo , Regulación hacia Arriba , Neoplasias de la Mama/metabolismo , ARN Mensajero/genética , Luciferasas/metabolismo , Cromatina , Línea Celular Tumoral
6.
Biol Pharm Bull ; 45(6): 793-797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35650105

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxicity of dioxins and polycyclic aromatic hydrocarbons. Recent studies have suggested that AhR is involved in cancer immunity. In the present study, we examined whether AhR regulates the expression of immune checkpoint genes in breast cancer cells. We discovered that the mRNA expression of V-set domain containing T cell activation inhibitor 1 (VTCN1) that negatively regulates T cell immunity was upregulated by AhR agonists in breast cancer cell lines, MCF-7 and T47D. Furthermore, AhR knockout or knockdown experiments clearly demonstrated that upregulation of VTCN1 gene expression by 3-methylcholanthrene was AhR dependent. Luciferase reporter and chromatin immunoprecipitation assays revealed that this upregulation of VTCN1 gene expression was induced by the recruitment of AhR to the AhR responsive element in the VTCN1 gene promoter in MCF-7 cells. Taken together, AhR directly regulates VTCN1 gene expression in MCF-7 cells.


Asunto(s)
Neoplasias de la Mama , Receptores de Hidrocarburo de Aril , Inhibidor 1 de la Activación de Células T con Dominio V-Set , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias de la Mama/genética , Femenino , Expresión Génica , Humanos , Células MCF-7 , Metilcolantreno/toxicidad , Receptores de Hidrocarburo de Aril/genética , Inhibidor 1 de la Activación de Células T con Dominio V-Set/genética
7.
J Nat Med ; 76(1): 110-118, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34463909

RESUMEN

Breast cancer is the most commonly diagnosed cancer among women worldwide. Despite a variety of drugs available for the treatment of patients with breast cancer, drug resistance remains a significant clinical problem. Therefore, there is an urgent need to develop drugs with new mechanisms of action. Camalexin is the main indole phytoalexin in Arabidopsis thaliana and other crucifers. Camalexin inhibits the proliferation of various cancer cells. However, the mechanism by which camalexin inhibits cell proliferation remains unclear. In this study, we found that camalexin inhibited cell proliferation and migration of breast cancer cell lines. Furthermore, camalexin also suppressed breast cancer stem cell-derived mammosphere formation. We previously reported that the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) agonist suppresses mammosphere formation. Several compounds with indole structures are known to act as AhR agonists. Therefore, we hypothesized that the inhibition of mammosphere formation by camalexin may involve AhR activation. We found that camalexin increased the nuclear translocation of AhR, AhR-mediated transcriptional activation, and expression of AhR target genes. In addition, camalexin suppressed mammosphere formation in AhR-expressing breast cancer cells more than in the breast cancer cells that lacked AhR expression. Taken together, the data demonstrate that camalexin is a novel AhR agonist and that the inhibition of cell proliferation, migration, and mammosphere formation by camalexin involves the activation of AhR. Our findings suggest that camalexin, an AhR agonist, may be a novel therapeutic agent for breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptores de Hidrocarburo de Aril , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Indoles/farmacología , Receptores de Hidrocarburo de Aril/genética , Sesquiterpenos , Tiazoles , Fitoalexinas
8.
Adv Exp Med Biol ; 1331: 19-29, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453290

RESUMEN

During the development of the nervous system, neurons respond to diffusible cues secreted by target cells. Because such target-derived factors regulate development, maturation, and maintenance of axons as well as somatodendritic compartments, signals initiated at distal axons must be retrogradely transmitted toward cell bodies. Neurotrophins, including the nerve growth factor (NGF), provide one of the best-known examples of target-derived growth factors. The cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies are key mechanisms by which target-derived neurotrophins influence neurons. Evidence accumulated over the past several decades has begun to uncover the molecular mechanisms of formation, transport, and biological functions of these specialized endosomes called "signaling endosomes."


Asunto(s)
Endosomas , Factor de Crecimiento Nervioso , Axones , Factor de Crecimiento Nervioso/genética , Neuronas , Transducción de Señal
9.
Biochem Biophys Res Commun ; 570: 131-136, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280616

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates various toxicological and biological functions. We reported previously that 3-methylcholanthrene (3MC), an exogenous AhR agonist, inhibited tumorsphere (mammosphere) formation from breast cancer cell lines, while the endogenous AhR agonist, indirubin, very weakly inhibited this process. However, the difference in inhibition mechanism of mammosphere formation by 3MC or indirubin is still unknown. In this study, we established AhR-re-expressing (KOTR-AhR) cells from AhR knockout MCF-7 cells using the tetracycline (Tet)-inducible gene expression systems. To identify any difference in inhibition of mammosphere formation by 3MC or indirubin, RNA-sequencing (RNA-seq) experiments were performed using KOTR-AhR cells. RNA-seq experiments revealed that cell division cycle 20 (CDC20), which regulates the cell cycle and mitosis, was decreased by 3MC, but not by indirubin, in the presence of AhR expression. Furthermore, the mRNA and protein levels of CDC20 were decreased by 3MC in MCF-7 cells via the AhR. In addition, mammosphere formation was suppressed by small interfering RNA-mediated CDC20 knockdown compared to the negative control in MCF-7 cells. These results suggest that AhR activation by 3MC suppresses mammosphere formation via downregulation of CDC20 expression in breast cancer cells. This study provides useful information for the development of AhR-targeted anti-cancer drugs.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas Cdc20/metabolismo , Regulación hacia Abajo , Metilcolantreno/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Esferoides Celulares/patología , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Transcriptoma/genética
10.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330827

RESUMEN

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2's activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Red Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Esquizofrenia/diagnóstico , Biomarcadores/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética
11.
Biol Pharm Bull ; 44(4): 571-578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790107

RESUMEN

We had previously reported that treatment with the aryl hydrocarbon receptor (AHR) agonist ß-naphthoflavone (ßNF) suppressed mammosphere formation derived from cancer stem cells in human breast cancer MCF-7 cells (Cancer Lett., 317, 2012, Zhao et al.). Here, using several AHR agonists, we have investigated the association of this suppression with the classical ability to induce AHR-mediated gene transcription in the xenobiotic response element (XRE). The mammosphere formation assays were performed using wild-type and AHR-knockout MCF-7 cells in the presence of AHR agonists including 3-methylcholanthrene (3MC), benzo[a]pyrene (BaP), 7,12-dimethylbenz[a]anthracene (DMBA), 6-formylindolo[3,2-b]carbazole (FICZ), indirubin, indole-3-carbinol (I3C), indole-3-acetic acid (IAA), and kynurenine (KYN), followed by the XRE-reporter gene assays of the agonists. We showed that treatments with 3MC, BaP, and DMBA strongly suppressed mammosphere formation of the stem cells in an AHR-dependent manner, while other agonists showed weaker suppression. In reporter gene assays, the strength or duration of AHR/XRE-mediated gene transcription was found to be dependent on the agonist. Although strong transcriptional activation was observed with 3MC, FICZ, indirubin, I3C, IAA, or KYN after 6 h of treatment, only weak activation was seen with BaP or DMBA. While transcriptional activation was sustained or increased at 24 h with 3MC, BaP, or DMBA, appreciable reduction was observed with the other agonists. In conclusions, the results demonstrated that the suppressive effects of AHR agonists on mammosphere formation do not necessarily correlate with their abilities to induce AHR-mediated gene transcription. Hence, different AHR functions may be differentially induced in an agonist-dependent manner.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Neoplasias de la Mama/genética , Indoles/farmacología , Quinurenina/farmacología , Hidrocarburos Policíclicos Aromáticos/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Transcripción Genética/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Supervivencia Celular/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes Reporteros , Humanos , Células MCF-7 , Receptores de Hidrocarburo de Aril/genética
12.
Eur J Neurosci ; 53(10): 3279-3293, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33772906

RESUMEN

The semaphorin family is a well-characterized family of secreted or membrane-bound proteins that are involved in activity-independent neurodevelopmental processes, such as axon guidance, cell migration, and immune functions. Although semaphorins have recently been demonstrated to regulate activity-dependent synaptic scaling, their roles in Hebbian synaptic plasticity as well as learning and memory remain poorly understood. Here, using a rodent model, we found that an inhibitory avoidance task, a hippocampus-dependent contextual learning paradigm, increased secretion of semaphorin 3A in the hippocampus. Furthermore, the secreted semaphorin 3A in the hippocampus mediated contextual memory formation likely by driving AMPA receptors into hippocampal synapses via the neuropilin1-plexin A4-semaphorin receptor complex. This signaling process involves alteration of the phosphorylation status of collapsin response mediator protein 2, which has been characterized as a downstream molecule in semaphorin signaling. These findings implicate semaphorin family as a regulator of Hebbian synaptic plasticity and learning.


Asunto(s)
Semaforina-3A , Semaforinas , Aprendizaje , Plasticidad Neuronal , Sinapsis
13.
J Toxicol Sci ; 46(1): 25-29, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33408298

RESUMEN

The aryl hydrocarbon receptor (AhR) regulates expression of genes encoding drug/xenobiotic metabolizing enzymes. Cytochrome P450 (CYP) 3A5 is involved in drug metabolism. However, regulation of CYP3A5 gene expression is not yet well understood. In this study, we aimed to investigate the effect of the ligands of AhR on CYP3A5 gene expression. CYP3A5 mRNA expression was induced by the polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (3MC) and benzo[a]pyrene in HepG2 cells. To determine whether the PAHs induced CYP3A5 gene expression via AhR, we generated AhR knockout (AhR KO) HepG2 cells. CYP3A5 mRNA expression was not induced by 3MC treatment in AhR KO cells. In addition, we generated AhR rescue cells from AhR KO cells and evaluated CYP3A5 mRNA expression. We found that CYP3A5 mRNA expression was induced by 3MC treatment in AhR rescue cells. Taken together, these results demonstrated that CYP3A5 mRNA expression was induced by PAHs via AhR in HepG2 cells. Our findings suggest that ligand-activated AhR affects CYP3A5-mediated drug metabolism.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Hidrocarburos Policíclicos Aromáticos/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Células Hep G2 , Humanos , Ligandos , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Toxicol Res (Camb) ; 9(3): 271-282, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32670558

RESUMEN

Aryl hydrocarbon receptor (AhR) and androgen receptor (AR) are ligand-activated transcription factors with profound cross-talk between their signal transduction pathways. Previous studies have shown that AhR agonists activate the transcription of AR-regulated genes in an androgen-independent manner; however, the underlying mechanism remains unclear. To decipher this mechanism, we evaluated the effects of 3-methylcholanthrene (3MC), a potent AhR agonist, on the transcription of AR-regulated genes in three AR-expressing cell lines. 3MC induced the expression of not only three representative AR-regulated chromosomal genes but also the exogenous AR-responsive luciferase reporter gene. No significant difference in the 3MC-induced luciferase activity was detected in the presence of SKF-525A, a non-specific inhibitor of CYP enzymes. The androgenic effects of 3MC were diminished by AhR and AR knockdown. Following 3MC treatment, the amount of nuclear AhR and AR increased synchronously. Co-immunoprecipitation revealed that AhR and AR formed a complex in the nucleus of cells treated with 3MC. AR was recruited to the proximal promoter and distal enhancer regions of the PSA gene upon the addition of 3MC. We propose that AhR activated by 3MC forms a complex with unliganded AR which translocates from the cytoplasm to the nucleus. Nuclear AR now binds the transcriptional regulatory region of AR-regulated genes and activates the transcription.

15.
Brain Res ; 1736: 146762, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32156571

RESUMEN

Proper migration and positioning of Purkinje cells are important for formation of the developing cerebellum. Although several cyclin-dependent kinase 5 (Cdk5) substrates are known to be critical for ordered neuronal migration, there are no reports of mutant mouse-based, in vivo studies on the function of Cdk5-phosphorylation substrates in migration of Purkinje cells. We focused on the analysis of collapsin response mediator protein 2 (CRMP2), one of the Cdk5 substrates, because a previous study reported migration defects of cortical neurons with shRNA-mediated knockdown of CRMP2. However, CRMP2 KI/KI mice, in which Cdk5-phosphorylation is inhibited, showed little defects in Purkinje cell migration and positioning. We hypothesized compensatory redundant functions of the other CRMPs, and analyzed the migration and positioning of Purkinje cells in the cerebellum in every combination of CRMP1 knockout (KO), CRMP2 KI/KI, and CRMP4 KO mice. Severe disturbance of migration and positioning of Purkinje cells were observed in the triple mutant mice. We also found motor coordination defects in the triple CRMPs mutant mice. These results suggest the importance of both, phosphorylation of CRMP2 by Cdk5 and the redundant functions of CRMP1 and CRMP4 in proper migration and positioning of Purkinje cells in developing cerebellum.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo , Animales , Encéfalo/metabolismo , Cerebelo/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intercelular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Neurogénesis , Neuronas/metabolismo , Fosforilación , Células de Purkinje/fisiología
17.
J Pharmacol Sci ; 141(2): 91-96, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31679963

RESUMEN

Neurons extend axons far from cell bodies, and retrograde communications from distal axons to cell bodies and/or dendrites play critical roles in the development and maintenance of neuronal circuits. In neurotrophin signaling, the retrograde axonal transport of endosomes containing active ligand-receptor complexes from distal axons to somatodendrite compartments mediates retrograde signaling. However, the generality and specificity of these endosome-based transportations called "signaling endosomes" remain to be elucidated. Here, I summarize the discovery of semaphorin3A signaling endosomes, the first example other than neurotrophins to regulate dendritic development via AMPA receptor GluA2 localization in dendrites. The molecular components of Sema3A and neurotrophin signaling endosomes are distinct, but partially overlap to regulate specific and common cellular events. Because receptors are transported back to the cell bodies, neurons must replenish receptors on the growth cone surface to ensure continued response to the target-derived ligands. Recent findings have demonstrated that retrograde signaling endosomes also induce anterograde delivery of nascent receptors in neurotrophin signaling. The coupling between anterograde and retrograde axonal transport via signaling endosomes therefore plays a critical role in regulating proper neuronal network formation.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Endosomas/metabolismo , Degeneración Retrógrada/metabolismo , Animales , Comunicación Celular , Humanos , Factores de Crecimiento Nervioso/metabolismo , Transporte de Proteínas/fisiología , Receptores AMPA/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal
19.
Biochem Biophys Res Commun ; 516(3): 693-698, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31253396

RESUMEN

Triple-negative breast cancer (TNBC) is associated with poor prognosis, because of no effective targeted therapy. In the present study, we demonstrated the crucial role of the aryl hydrocarbon receptor (AhR) in mediating the effects of the chemotherapeutic agent doxorubicin (DOX) in the chemotherapeutic sensitivity of TNBC. Firstly, we established AhR knockout (KO) MDA-MB 231 TNBC cells. The cytotoxic effects of DOX were more pronounced in AhR KO cells than in parental cells. In addition, our results indicated that AhR KO cells showed downregulated expression of DOX-metabolism enzyme, aldo-keto reductase (AKR) 1C3, relative to those of parental cells. Furthermore, AhR was found to enhance AKR1C3 promoter reporter activity, suggesting that AKR1C3 mRNA transcription is activated by AhR. Additionally, our findings confirmed that the downregulation of AKR1C3 expression enhanced DOX sensitivity in MDA-MB 231 cells. Finally, AhR and AKR1C3 expression were positively correlated in human breast cancer. Taken together, our results suggested that AhR is involved in DOX sensitivity by regulating AKR1C3 expression in TNBC cells.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores de Hidrocarburo de Aril/genética , Neoplasias de la Mama Triple Negativas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Técnicas de Inactivación de Genes , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
20.
Bioorg Chem ; 88: 102977, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31100617

RESUMEN

Selective estrogen receptor modulators (SERMs) act as either agonist or antagonist of estrogen receptor (ER) in a tissue selective manner and have been used in several diseases such as breast cancer, postmenopausal syndrome, osteoporosis, and cardiovascular diseases. However, current SERMs may also increase the risk of serious side effects and trigger drug resistance. Herein, a screening program, that was designed to search for novel SERMs, resulted in the identification of a series of 2-arylbenzofuran-containing compounds that are ligands for ERα, when applying the Gaussia-luciferase reporter assay. One of these compounds, 10-dehydrooxyglycyuralin E (T9) was chemically synthesized. T9 showed anti-estrogenic/proliferative activity in ERα-positive breast cancer cells. Pretreatment of T9 prevented the mRNA expression of GREB1, which is an estrogen response gene. Furthermore, by an in silico docking simulation study we demonstrated that T9 showed interactions directly to ERα. Taken together, these results demonstrated that T9 is a candidate of SERMs and a useful seed compound for the foundation of the selective activity of SERMs.


Asunto(s)
Benzofuranos/farmacología , Receptor alfa de Estrógeno/agonistas , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Benzofuranos/síntesis química , Benzofuranos/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Moduladores Selectivos de los Receptores de Estrógeno/síntesis química , Moduladores Selectivos de los Receptores de Estrógeno/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA