Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biochem ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843068

RESUMEN

Most autophagy-related genes, or ATG genes, have been identified in studies using budding yeast. Although the functions of the ATG genes are well understood, the contributions of individual genes to non-selective and various types of selective autophagy remain to be fully elucidated. In this study, we quantified the activity of non-selective autophagy, the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy, endoplasmic reticulum (ER)-phagy, and pexophagy in all Saccharomyces cerevisiae atg mutants. Among the mutants of the core autophagy genes considered essential for autophagy, the atg13 mutant and mutants of the genes involved in the two ubiquitin-like conjugation systems retained residual autophagic functionality. In particular, mutants of the Atg8 ubiquitin-like conjugation system (the Atg8 system) exhibited substantial levels of non-selective autophagy, the Cvt pathway, and pexophagy, although mitophagy and ER-phagy were undetectable. Atg8-system mutants also displayed intravacuolar vesicles resembling autophagic bodies, albeit at significantly reduced size and frequency. Thus, our data suggest that membranous sequestration and vacuolar delivery of autophagic cargo can occur in the absence of the Atg8 system. Alongside these findings, the comprehensive analysis conducted here provides valuable datasets for future autophagy research.

2.
Autophagy ; : 1-9, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38818923

RESUMEN

Mitochondria undergo fission and fusion, and their coordinated balance is crucial for maintaining mitochondrial homeostasis. In yeast, the dynamin-related protein Dnm1 is a mitochondrial fission factor acting from outside the mitochondria. We recently reported the mitochondrial intermembrane space protein Atg44/mitofissin/Mdi1/Mco8 as a novel fission factor, but the relationship between Atg44 and Dnm1 remains elusive. Here, we show that Atg44 is required to complete Dnm1-mediated mitochondrial fission under homeostatic conditions. Atg44-deficient cells often exhibit enlarged mitochondria with accumulated Dnm1 and rosary-like mitochondria with Dnm1 foci at constriction sites. These mitochondrial constriction sites retain the continuity of both the outer and inner membranes within an extremely confined space, indicating that Dnm1 is unable to complete mitochondrial fission without Atg44. Moreover, accumulated Atg44 proteins are observed at mitochondrial constriction sites. These findings suggest that Atg44 and Dnm1 cooperatively execute mitochondrial fission from inside and outside the mitochondria, respectively.Abbreviation: ATG: autophagy related; CLEM: correlative light and electron microscopy; EM: electron microscopy; ER: endoplasmic reticulum; ERMES: endoplasmic reticulum-mitochondria encounter structure; GA: glutaraldehyde; GFP: green fluorescent protein; GTP: guanosine triphosphate: IMM: inner mitochondrial membrane; IMS: intermembrane space; OMM: outer mitochondrial membrane; PB: phosphate buffer; PBS: phosphate-buffered saline; PFA: paraformaldehyde; RFP: red fluorescent protein; WT: wild type.

3.
Cell Death Differ ; 31(5): 651-661, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519771

RESUMEN

Mitophagy plays an important role in the maintenance of mitochondrial homeostasis and can be categorized into two types: ubiquitin-mediated and receptor-mediated pathways. During receptor-mediated mitophagy, mitophagy receptors facilitate mitophagy by tethering the isolation membrane to mitochondria. Although at least five outer mitochondrial membrane proteins have been identified as mitophagy receptors, their individual contribution and interrelationship remain unclear. Here, we show that HeLa cells lacking BNIP3 and NIX, two of the five receptors, exhibit a complete loss of mitophagy in various conditions. Conversely, cells deficient in the other three receptors show normal mitophagy. Using BNIP3/NIX double knockout (DKO) cells as a model, we reveal that mitophagy deficiency elevates mitochondrial reactive oxygen species (mtROS), which leads to activation of the Nrf2 antioxidant pathway. Notably, BNIP3/NIX DKO cells are highly sensitive to ferroptosis when Nrf2-driven antioxidant enzymes are compromised. Moreover, the sensitivity of BNIP3/NIX DKO cells is fully rescued upon the introduction of wild-type BNIP3 and NIX, but not the mutant forms incapable of facilitating mitophagy. Consequently, our results demonstrate that BNIP3 and NIX-mediated mitophagy plays a role in regulating mtROS levels and protects cells from ferroptosis.


Asunto(s)
Ferroptosis , Proteínas de la Membrana , Mitocondrias , Mitofagia , Proteínas Proto-Oncogénicas , Especies Reactivas de Oxígeno , Humanos , Regulación hacia Abajo , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
4.
Sci Rep ; 14(1): 6178, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485716

RESUMEN

Mitochondrial dysfunction in pancreatic ß-cells leads to impaired glucose-stimulated insulin secretion (GSIS) and type 2 diabetes (T2D), highlighting the importance of autophagic elimination of dysfunctional mitochondria (mitophagy) in mitochondrial quality control (mQC). Imeglimin, a new oral anti-diabetic drug that improves hyperglycemia and GSIS, may enhance mitochondrial activity. However, chronic imeglimin treatment's effects on mQC in diabetic ß-cells are unknown. Here, we compared imeglimin, structurally similar anti-diabetic drug metformin, and insulin for their effects on clearance of dysfunctional mitochondria through mitophagy in pancreatic ß-cells from diabetic model db/db mice and mitophagy reporter (CMMR) mice. Pancreatic islets from db/db mice showed aberrant accumulation of dysfunctional mitochondria and excessive production of reactive oxygen species (ROS) along with markedly elevated mitophagy, suggesting that the generation of dysfunctional mitochondria overwhelmed the mitophagic capacity in db/db ß-cells. Treatment with imeglimin or insulin, but not metformin, reduced ROS production and the numbers of dysfunctional mitochondria, and normalized mitophagic activity in db/db ß-cells. Concomitantly, imeglimin and insulin, but not metformin, restored the secreted insulin level and reduced ß-cell apoptosis in db/db mice. In conclusion, imeglimin mitigated accumulation of dysfunctional mitochondria through mitophagy in diabetic mice, and may contribute to preserving ß-cell function and effective glycemic control in T2D.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Triazinas , Ratones , Animales , Secreción de Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Ratones Endogámicos , Mitocondrias/metabolismo , Apoptosis
5.
Mol Cell ; 83(12): 2045-2058.e9, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37192628

RESUMEN

Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.


Asunto(s)
Autofagia , Mitofagia , Animales , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Lípidos , Mamíferos/metabolismo
6.
Cell Rep ; 42(5): 112454, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37160114

RESUMEN

PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo
7.
Autophagy ; 19(10): 2657-2667, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37191320

RESUMEN

The endoplasmic reticulum (ER) undergoes selective autophagy called reticulophagy or ER-phagy. Multiple reticulon- and receptor expression enhancing protein (REEP)-like ER-shaping proteins, including budding yeast Atg40, serve as reticulophagy receptors that stabilize the phagophore on the ER by interacting with phagophore-conjugated Atg8. Additionally, they facilitate phagophore engulfment of the ER by remodeling ER morphology. We reveal that Hva22, a REEP family protein in fission yeast, promotes reticulophagy without Atg8-binding capacity. The role of Hva22 in reticulophagy can be replaced by expressing Atg40 independently of its Atg8-binding ability. Conversely, adding an Atg8-binding sequence to Hva22 enables it to substitute for Atg40 in budding yeast. Thus, the phagophore-stabilizing and ER-shaping activities, both of which Atg40 solely contains, are divided between two separate factors, receptors and Hva22, respectively, in fission yeast.Abbreviations: AIM: Atg8-family interacting motif; Atg: autophagy related; DTT: dithiothreitol; ER: endoplasmic reticulum GFP: green fluorescent protein; NAA: 1-naphthaleneacetic acid; REEP: receptor expression enhancing protein; RFP: red fluorescent protein; UPR: unfolded protein response.


Asunto(s)
Autofagia , Schizosaccharomyces , Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Portadoras/metabolismo
8.
Nat Commun ; 14(1): 1817, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002207

RESUMEN

Human parechovirus (PeV-A) is an RNA virus that belongs to the family Picornaviridae and it is currently classified into 19 genotypes. PeV-As usually cause mild illness in children and adults. Among the genotypes, PeV-A3 can cause severe diseases in neonates and young infants, resulting in neurological sequelae and death. In this study, we identify the human myeloid-associated differentiation marker (MYADM) as an essential host factor for the entry of six PeV-As (PeV-A1 to PeV-A6), including PeV-A3. The infection of six PeV-As (PeV-A1 to PeV-A6) to human cells is abolished by knocking out the expression of MYADM. Hamster BHK-21 cells are resistant to PeV-A infection, but the expression of human MYADM in BHK-21 confers PeV-A infection and viral production. Furthermore, VP0 capsid protein of PeV-A3 interacts with one extracellular domain of human MYADM on the cell membrane of BHK-21. The identification of MYADM as an essential entry factor for PeV-As infection is expected to advance our understanding of the pathogenesis of PeV-As.


Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Picornaviridae , Adulto , Niño , Humanos , Lactante , Recién Nacido , Genotipo , Parechovirus/genética , Infecciones por Picornaviridae/genética
9.
Diabetologia ; 66(1): 147-162, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181536

RESUMEN

AIMS/HYPOTHESIS: Mitophagy, the selective autophagy of mitochondria, is essential for maintenance of mitochondrial function. Recent studies suggested that defective mitophagy in beta cells caused diabetes. However, because of technical difficulties, the development of a convenient and reliable method to evaluate mitophagy in beta cells in vivo is needed. The aim of this study was to establish beta cell-specific mitophagy reporter mice and elucidate the role of mitophagy in beta cell function under metabolically stressed conditions induced by a high-fat diet (HFD). METHODS: Mitophagy was assessed using newly generated conditional mitochondrial matrix targeting mitophagy reporter (CMMR) mice, in which mitophagy can be visualised specifically in beta cells in vivo using a fluorescent probe sensitive to lysosomal pH and degradation. Metabolic stress was induced in mice by exposure to the HFD for 20 weeks. The accumulation of dysfunctional mitochondria was examined by staining for functional/total mitochondria and reactive oxygen species (ROS) using specific fluorescent dyes and antibodies. To investigate the molecular mechanism underlying mitophagy in beta cells, overexpression and knockdown experiments were performed. HFD-fed mice were examined to determine whether chronic insulin treatment for 6 weeks could ameliorate mitophagy, mitochondrial function and impaired insulin secretion. RESULTS: Exposure to the HFD increased the number of enlarged (HFD-G) islets with markedly elevated mitophagy. Mechanistically, HFD feeding induced severe hypoxia in HFD-G islets, which upregulated mitophagy through the hypoxia-inducible factor 1-ɑ (Hif-1ɑ)/BCL2 interacting protein 3 (BNIP3) axis in beta cells. However, HFD-G islets unexpectedly showed the accumulation of dysfunctional mitochondria due to excessive ROS production, suggesting an insufficient capacity of mitophagy for the degradation of dysfunctional mitochondria. Chronic administration of insulin ameliorated hypoxia and reduced ROS production and dysfunctional mitochondria, leading to decreased mitophagy and restored insulin secretion. CONCLUSIONS/INTERPRETATION: We demonstrated that CMMR mice enabled the evaluation of mitophagy in beta cells. Our results suggested that metabolic stress induced by the HFD caused the aberrant accumulation of dysfunctional mitochondria, which overwhelmed the mitophagic capacity and was associated with defective maintenance of mitochondrial function and impaired insulin secretion.


Asunto(s)
Mitocondrias , Estrés Fisiológico , Ratones , Animales , Insulina , Hipoxia
10.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34355730

RESUMEN

Male germline development involves choreographed changes to mitochondrial number, morphology and organization. Mitochondrial reorganization during spermatogenesis was recently shown to require mitochondrial fusion and fission. Mitophagy, the autophagic degradation of mitochondria, is another mechanism for controlling mitochondrial number and physiology, but its role during spermatogenesis is largely unknown. During post-meiotic spermatid development, restructuring of the mitochondrial network results in packing of mitochondria into a tight array in the sperm midpiece to fuel motility. Here, we show that disruption of mouse Fis1 in the male germline results in early spermatid arrest that is associated with increased mitochondrial content. Mutant spermatids coalesce into multinucleated giant cells that accumulate mitochondria of aberrant ultrastructure and numerous mitophagic and autophagic intermediates, suggesting a defect in mitophagy. We conclude that Fis1 regulates mitochondrial morphology and turnover to promote spermatid maturation.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Espermátides/metabolismo , Espermatogénesis/genética , Animales , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética
11.
iScience ; 24(7): 102733, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34258561

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease characterized by the formation of cytoplasmic ubiquitinated TDP-43 protein aggregates in motor neurons. Stress granules (SGs) are stress-induced cytoplasmic protein aggregates containing various neuropathogenic proteins, including TDP-43. Several studies have suggested that SGs are the initial site of the formation of pathogenic ubiquitinated TDP-43 aggregates in ALS neurons. Mutations in the optineurin (OPTN) and TIA1 genes are causative factors of familial ALS with TDP-43 aggregation pathology. We found that both OPTN depletion and ALS-associated OPTN mutations upregulated the TIA1 level in cells recovered from heat shock, and this upregulated TIA1 increased the amount of ubiquitinated TDP-43. Ubiquitinated TDP-43 induced by OPTN depletion was localized in SGs. Our study suggests that ALS-associated loss-of-function mutants of OPTN increase the amount of ubiquitinated TDP-43 in neurons by increasing the expression of TIA1, thereby promoting the aggregation of ubiquitinated TDP-43.

12.
J Cell Physiol ; 236(11): 7612-7624, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33934360

RESUMEN

Muscle disuse induces atrophy through increased reactive oxygen species (ROS) released from damaged mitochondria. Mitophagy, the autophagic degradation of mitochondria, is associated with increased ROS production. However, the mitophagy activity status during disuse-induced muscle atrophy has been a subject of debate. Here, we developed a new mitophagy reporter mouse line to examine how disuse affected mitophagy activity in skeletal muscles. Mice expressing tandem mCherry-EGFP proteins on mitochondria were then used to monitor the dynamics of mitophagy activity. The reporter mice demonstrated enhanced mitophagy activity and increased ROS production in atrophic soleus muscles following a 14-day hindlimb immobilization. Results also showed an increased expression of multiple mitophagy genes, including Bnip3, Bnip3l, and Park2. Our findings thus conclude that disuse enhances mitophagy activity and ROS production in atrophic skeletal muscles and suggests that mitophagy is a potential therapeutic target for disuse-induced muscle atrophy.


Asunto(s)
Mitocondrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Suspensión Trasera , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Inanición , Factores de Tiempo , Proteína Fluorescente Roja
13.
EMBO Rep ; 22(3): e49097, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33565245

RESUMEN

Parkin promotes cell survival by removing damaged mitochondria via mitophagy. However, although some studies have suggested that Parkin induces cell death, the regulatory mechanism underlying the dual role of Parkin remains unknown. Herein, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) regulates Parkin-mediated cell death through the FKBP38-dependent dynamic translocation from the mitochondria to the ER during mitophagy. Mechanistically, MITOL mediates ubiquitination of Parkin at lysine 220 residue, which promotes its proteasomal degradation, and thereby fine-tunes mitophagy by controlling the quantity of Parkin. Deletion of MITOL leads to accumulation of the phosphorylated active form of Parkin in the ER, resulting in FKBP38 degradation and enhanced cell death. Thus, we have shown that MITOL blocks Parkin-induced cell death, at least partially, by protecting FKBP38 from Parkin. Our findings unveil the regulation of the dual function of Parkin and provide a novel perspective on the pathogenesis of PD.


Asunto(s)
Mitofagia , Ubiquitina-Proteína Ligasas , Supervivencia Celular , Células HeLa , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
14.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33317697

RESUMEN

Mitophagy plays an important role in mitochondrial homeostasis. In yeast, the phosphorylation of the mitophagy receptor Atg32 by casein kinase 2 is essential for mitophagy. This phosphorylation is counteracted by the yeast equivalent of the STRIPAK complex consisting of the PP2A-like protein phosphatase Ppg1 and Far3-7-8-9-10-11 (Far complex), but the underlying mechanism remains elusive. Here we show that two subpopulations of the Far complex reside in the mitochondria and endoplasmic reticulum, respectively, and play distinct roles; the former inhibits mitophagy via Atg32 dephosphorylation, and the latter regulates TORC2 signaling. Ppg1 and Far11 form a subcomplex, and Ppg1 activity is required for the assembling integrity of Ppg1-Far11-Far8. The Far complex preferentially interacts with phosphorylated Atg32, and this interaction is weakened by mitophagy induction. Furthermore, the artificial tethering of Far8 to Atg32 prevents mitophagy. Taken together, the Ppg1-mediated Far complex formation and its dissociation from Atg32 are crucial for mitophagy regulation.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Mitocondrias/enzimología , Mitofagia , Fosfoproteínas Fosfatasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Relacionadas con la Autofagia/genética , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Complejos Multiproteicos , Fosfoproteínas Fosfatasas/genética , Fosforilación , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
15.
Elife ; 92020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33138913

RESUMEN

Degradation of mitochondria through mitophagy contributes to the maintenance of mitochondrial function. In this study, we identified that Atg43, a mitochondrial outer membrane protein, serves as a mitophagy receptor in the model organism Schizosaccharomyces pombe to promote the selective degradation of mitochondria. Atg43 contains an Atg8-family-interacting motif essential for mitophagy. Forced recruitment of Atg8 to mitochondria restores mitophagy in Atg43-deficient cells, suggesting that Atg43 tethers expanding isolation membranes to mitochondria. We found that the mitochondrial import factors, including the Mim1-Mim2 complex and Tom70, are crucial for mitophagy. Artificial mitochondrial loading of Atg43 bypasses the requirement of the import factors, suggesting that they contribute to mitophagy through Atg43. Atg43 not only maintains growth ability during starvation but also facilitates vegetative growth through its mitophagy-independent function. Thus, Atg43 is a useful model to study the mechanism and physiological roles, as well as the origin and evolution, of mitophagy in eukaryotes.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Autofagia , Citosol/metabolismo , Evolución Molecular , Membranas Mitocondriales/metabolismo , Dominios Proteicos , Especificidad de la Especie , Técnicas del Sistema de Dos Híbridos
16.
Sci Rep ; 10(1): 1465, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001742

RESUMEN

Mitophagy plays an important role in the maintenance of mitochondrial homeostasis. PTEN-induced kinase (PINK1), a key regulator of mitophagy, is degraded constitutively under steady-state conditions. During mitophagy, it becomes stabilized in the outer mitochondrial membrane, particularly under mitochondrial stress conditions, such as in treatment with uncouplers, generation of excessive mitochondrial reactive oxygen species, and formation of protein aggregates in mitochondria. Stabilized PINK1 recruits and activates E3 ligases, such as Parkin and mitochondrial ubiquitin ligase (MUL1), to ubiquitinate mitochondrial proteins and induce ubiquitin-mediated mitophagy. Here, we found that the anticancer drug gemcitabine induces the stabilization of PINK1 and subsequent mitophagy, even in the absence of Parkin. We also found that gemcitabine-induced stabilization of PINK1 was not accompanied by mitochondrial depolarization. Interestingly, the stabilization of PINK1 was mediated by MUL1. These results suggest that gemcitabine induces mitophagy through MUL1-mediated stabilization of PINK1 on the mitochondrial membrane independently of mitochondrial depolarization.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Desoxicitidina/farmacología , Células HeLa , Humanos , Immunoblotting , Mitocondrias/enzimología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Gemcitabina
17.
FASEB J ; 34(2): 2944-2957, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908024

RESUMEN

Mitochondrial quality control maintains mitochondrial function by regulating mitochondrial dynamics and mitophagy. Despite the identification of mitochondrial quality control factors, little is known about the crucial regulators coordinating both mitochondrial fission and mitophagy. Through a cell-based functional screening assay, FK506 binding protein 8 (FKBP8) was identified to target microtubule-associated protein 1 light chain 3 (LC3) to the mitochondria and to change mitochondrial morphology. Microscopy analysis revealed that the formation of tubular and enlarged mitochondria was observed in FKBP8 knockdown HeLa cells and the cortex of Fkbp8 heterozygote-knockout mouse embryos. Under iron depletion-induced stress, FKBP8 was recruited to the site of mitochondrial division through budding and colocalized with LC3. FKBP8 was also found to be required for mitochondrial fragmentation and mitophagy under hypoxic stress. Conversely, FKBP8 overexpression induced mitochondrial fragmentation in HeLa cells, human fibroblasts and mouse embryo fibroblasts (MEFs), and this fragmentation occurred in Drp1 knockout MEF cells, FIP200 knockout HeLa cells and BNIP3/NIX double knockout HeLa cells, but not in Opa1 knockout MEFs. Interestingly, we found an LIR motif-like sequence (LIRL), as well as an LIR motif, at the N-terminus of FKBP8 and LIRL was essential for both inducing mitochondrial fragmentation and binding of FKBP8 to OPA1. Together, we suggest that FKBP8 plays an essential role in mitochondrial fragmentation through LIRL during mitophagy and this activity of FKBP8 together with LIR is required for mitophagy under stress conditions.


Asunto(s)
Fibroblastos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Fisiológico , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Proteínas de Unión a Tacrolimus/genética
18.
Invest Ophthalmol Vis Sci ; 60(10): 3625-3635, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469402

RESUMEN

Purpose: Glaucoma results in progressive degeneration of the optic nerve and irreversible vision loss. Several mutations in the gene encoding optineurin (OPTN), the receptor for Parkin-dependent mitochondrial autophagy (mitophagy), are associated with glaucoma and amyotrophic lateral sclerosis (ALS). ALS mutations in the ubiquitin-binding domain of OPTN impair Parkin-dependent mitophagy. However, the effects of glaucoma mutations in this region remain unknown. We examined the impact of glaucoma-associated OPTN mutations on Parkin-dependent mitophagy. Methods: The mitochondria-localized, pH-sensitive fluorescent protein mito-Keima was used to monitor mitophagy. HeLa cells expressing Parkin were treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or oligomycin/antimycin A (O/A) to induce Parkin-dependent mitophagy. Two complementary mitophagy receptors, OPTN and NDP52, were deleted in HeLa cells expressing mito-Keima and Parkin (DKO_HeLa). The mutant OPTN genes were re-introduced into DKO_HeLa cells using retroviruses or through transfection. Mitophagy activity and OPTN localization were evaluated via microscopic analyses. OPTN binding to ubiquitin was examined using an immunoprecipitation assay. Results: Parkin-dependent mitophagy was inhibited in DKO_HeLa cells. Introduction of two glaucoma mutations in the ubiquitin-interacting region of OPTN restored mitophagy in CCCP-treated DKO_HeLa cells, whereas the two ALS mutations failed to replicate this effect. Under treatment with CCCP, the two glaucoma-mutant OPTN proteins normally translocated to mitochondria and bound to ubiquitinated proteins. Furthermore, five additional glaucoma-mutant OPTN proteins restored CCCP-induced mitophagy. Moreover, treatment with O/A exhibited similar results. Conclusions: Glaucoma-mutant OPTN proteins retain their normal properties as mitophagy receptors, suggesting that mutations in the OPTN gene cause glaucoma through a mechanism independent of mitophagy defects.


Asunto(s)
Proteínas de Ciclo Celular/genética , Glaucoma de Ángulo Abierto/genética , Proteínas de Transporte de Membrana/genética , Mitofagia/fisiología , Mutación , Ubiquitina-Proteína Ligasas/genética , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Plásmidos , Transfección
19.
Methods Mol Biol ; 1782: 315-324, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29851008

RESUMEN

Mitochondrial autophagy or mitophagy is a process that selectively degrades mitochondria via autophagy. It is believed that mitophagy degrades damaged or unnecessary mitochondria and is important for maintaining mitochondrial homeostasis. To date, it is known that several stimuli can induce mitophagy. However, some of these stimuli (including iron depletion, hypoxia, and nitrogen starvation) induce mild mitophagy, which is difficult to detect by measuring the decrease in mitochondrial mass. Recently, we have successfully detected mitophagy induced under these conditions using mito-Keima as a reporter. In this chapter, we describe the protocols for induction and detection of iron depletion- and hypoxia-induced mitophagy using the mito-Keima-expressing cells.


Asunto(s)
Hipoxia de la Célula , Hierro/metabolismo , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Transfección/métodos , Animales , Canales de Calcio/química , Canales de Calcio/genética , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Fibroblastos , Vectores Genéticos/genética , Células HeLa , Humanos , Quelantes del Hierro/farmacología , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Lisosomas/metabolismo , Ratones , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Mitocondrias/efectos de los fármacos , Retroviridae/genética , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Transfección/instrumentación
20.
Cell Rep ; 23(12): 3579-3590, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925000

RESUMEN

Mitophagy plays an important role in mitochondrial quality control. In yeast, phosphorylation of the mitophagy receptor Atg32 by casein kinase 2 (CK2) upon induction of mitophagy is a prerequisite for interaction of Atg32 with Atg11 (an adaptor protein for selective autophagy) and following delivery of mitochondria to the vacuole for degradation. Because CK2 is constitutively active, Atg32 phosphorylation must be precisely regulated to prevent unrequired mitophagy. We found that the PP2A (protein phosphatase 2A)-like protein phosphatase Ppg1 was essential for dephosphorylation of Atg32 and inhibited mitophagy. We identified the Far complex proteins, Far3, Far7, Far8, Far9, Far10, and Far11, as Ppg1-binding proteins. Deletion of Ppg1 or Far proteins accelerated mitophagy. Deletion of a cytoplasmic region (amino acid residues 151-200) of Atg32 caused the same phenotypes as in ppg1Δ cells, which suggested that dephosphorylation of Atg32 by Ppg1 required this region. Therefore, Ppg1 and the Far complex cooperatively dephosphorylate Atg32 to prevent excessive mitophagy.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Mitofagia , Complejos Multiproteicos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Citosol/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Fosforilación , Receptores Citoplasmáticos y Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA