Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6719, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509204

RESUMEN

Alveolar bone loss caused by periodontal disease eventually leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are the tissue-specific cells for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. Here, we investigated the role of erythropoietin receptor (EPOR), which regulates the microenvironment-modulating function of mesenchymal stem cells, in PDLSC-based periodontal therapy. We isolated PDLSCs from patients with chronic periodontal disease and healthy donors, referred to as PD-PDLSCs and Cont-PDLSCs, respectively. PD-PDLSCs exhibited reduced potency of periodontal tissue regeneration and lower expression of EPOR compared to Cont-PDLSCs. EPOR-silencing suppressed the potency of Cont-PDLSCs mimicking PD-PDLSCs, whereas EPO-mediated EPOR activation rejuvenated the reduced potency of PD-PDLSCs. Furthermore, we locally transplanted EPOR-silenced and EPOR-activated PDLSCs into the gingiva around the teeth of ligament-induced periodontitis model mice and demonstrated that EPOR in PDLSCs participated in the regeneration of the periodontal ligament, cementum, and alveolar bone in the ligated teeth. The EPOR-mediated paracrine function of PDLSCs maintains periodontal immune suppression and bone metabolic balance via osteoclasts and osteoblasts in the periodontitis model mice. Taken together, these results suggest that EPOR signaling is crucial for PDLSC-based periodontal regeneration and paves the way for the development of novel options for periodontal therapy.


Asunto(s)
Enfermedades Periodontales , Periodontitis , Humanos , Ratones , Animales , Ligamento Periodontal , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Células Cultivadas , Diferenciación Celular , Células Madre , Enfermedades Periodontales/terapia , Enfermedades Periodontales/metabolismo , Periodontitis/terapia , Periodontitis/metabolismo , Ligamentos , Osteogénesis/fisiología
2.
Surg Today ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668735

RESUMEN

Hirschsprung disease (HSCR) and its associated disorders (AD-HSCR) often result in severe hypoperistalsis caused by enteric neuropathy, mesenchymopathy, and myopathy. Notably, HSCR involving the small intestine, isolated hypoganglionosis, chronic idiopathic intestinal pseudo-obstruction, and megacystis-microcolon-intestinal hypoperistalsis syndrome carry a poor prognosis. Ultimately, small-bowel transplantation (SBTx) is necessary for refractory cases, but it is highly invasive and outcomes are less than optimal, despite advances in surgical techniques and management. Thus, regenerative therapy has come to light as a potential form of treatment involving regeneration of the enteric nervous system, mesenchyme, and smooth muscle in affected areas. We review the cutting-edge regenerative therapeutic approaches for managing HSCR and AD-HSCR, including the use of enteric nervous system progenitor cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells as cell sources, the recipient intestine's microenvironment, and transplantation methods. Perspectives on the future of these treatments are also discussed.

3.
J Oral Biosci ; 64(4): 400-409, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36270608

RESUMEN

OBJECTIVES: Epithelial-mesenchymal interactions are extremely important in tooth development and essential for ameloblast differentiation, especially during tooth formation. We aimed to identify the type of mesenchymal cells important in ameloblast differentiation. METHODS: We used two types of cell culture systems with chambers and found that a subset of debtal mesenchimal cells is important for the differentiatiuon of dental spithelial cells into ameloblasts. Further, we induced dental pulp stem cell-like cells from dental pulp stem cells using the small molecule compound BIO ( a GSK-3 inhibitor IX) to clarify the mechanism involved in ameloblast differentiation induced by dental pulp stem cells. RESULTS: The BIO-induced dental pulp cells promoted the expression of mesenchymal stem cell markers Oct3/4 and Bcrp1. Furthermore, we used artificial dental pulp stem cells induced by BIO to identify the molecules expressed in dental pulp stem cells required for ameloblast differentiation. Panx3 expression was induced in the dental pulp stem cell through interaction with the dental epithelial cells. In addition, ATP release from cells increased in Panx3-expressing cells. We also confirmed that ATP stimulation is accepted in dental epithelial cells. CONCLUSIONS: These results showed that the Panx3 expressed in dental pulp stem cells is important for ameloblast differentiation and that ATP release by Panx3 may play a role in epithelial-mesenchymal interaction.


Asunto(s)
Ameloblastos , Células Madre Mesenquimatosas , Ameloblastos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Adenosina Trifosfato/metabolismo
4.
Mol Metab ; 66: 101599, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113772

RESUMEN

OBJECTIVE: Chronic liver diseases often involve metabolic damage to the skeletal system. The underlying mechanism of bone loss in chronic liver diseases remains unclear, and appropriate therapeutic options, except for orthotopic liver transplantation, have proved insufficient for these patients. This study aimed to investigate the efficacy and mechanism of transplantation of immature hepatocyte-like cells converted from stem cells from human exfoliated deciduous teeth (SHED-Heps) in bone loss of chronic liver fibrosis. METHODS: Mice that were chronically treated with CCl4 received SHED-Heps, and trabecular bone density, reactive oxygen species (ROS), and osteoclast activity were subsequently analyzed in vivo and in vitro. The effects of stanniocalcin 1 (STC1) knockdown in SHED-Heps were also evaluated in chronically CCl4 treated mice. RESULTS: SHED-Hep transplantation (SHED-HepTx) improved trabecular bone loss and liver fibrosis in chronic CCl4-treated mice. SHED-HepTx reduced hepatic ROS production and interleukin 17 (Il-17) expression under chronic CCl4 damage. SHED-HepTx reduced the expression of both Il-17 and tumor necrosis factor receptor superfamily 11A (Tnfrsf11a) and ameliorated the imbalance of osteoclast and osteoblast activities in the bone marrow of CCl4-treated mice. Functional knockdown of STC1 in SHED-Heps attenuated the benefit of SHED-HepTx including anti-bone loss effect by suppressing osteoclast differentiation through TNFSF11-TNFRSF11A signaling and enhancing osteoblast differentiation in the bone marrow, as well as anti-fibrotic and anti-ROS effects in the CCl4-injured livers. CONCLUSIONS: These findings suggest that targeting hepatic ROS provides a novel approach to treat bone loss resulting from chronic liver diseases.


Asunto(s)
Interleucina-17 , Cirrosis Hepática , Humanos , Ratones , Animales , Interleucina-17/metabolismo , Cirrosis Hepática/metabolismo , Hepatocitos/metabolismo , Estrés Oxidativo , Fibrosis
5.
STAR Protoc ; 3(2): 101386, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35592060

RESUMEN

Human dental pulp stem cell (hDPSCs)-based therapy is a feasible option for regenerative medicine, such as dental pulp regeneration. Here, we show the steps needed to colony-forming unit-fibroblasts (CFU-F)-based isolation, expansion, and cryopreservation of hDPSCs for manufacturing clinical-grade products under a xenogeneic-free/serum-free condition. We also demonstrate the characterization of hDPSCs by CFU-F, flow cytometric, and in vitro multipotent assays. For complete details on the use and execution of this protocol, please refer to Iwanaka et al. (2020).


Asunto(s)
Pulpa Dental , Regeneración , Diferenciación Celular , Humanos , Trasplante de Células Madre
6.
Stem Cell Res Ther ; 12(1): 582, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809720

RESUMEN

BACKGROUND: Biliary atresia (BA) is a severe hepatobiliary disease in infants that ultimately results in hepatic failure; however, its pathological mechanism is poorly elucidated. Current surgical options, including Kasai hepatoportoenterostomy and orthotopic liver organ transplantations, are palliative; thus, innovation in BA therapy is urgent. METHODS: To examine whether BA-specific post-natal stem cells are feasible for autologous cell source for BA treatment, we isolated from human exfoliated deciduous teeth, namely BA-SHED, using a standard colony-forming unit fibroblast (CFU-F) method and compared characteristics as mesenchymal stem cells (MSCs) to healthy donor-derived control SHED, Cont-SHED. BA-SHED and Cont-SHED were intrasplenically transplanted into chronic carbon tetrachloride (CCl4)-induced liver fibrosis model mice, followed by the analysis of bile drainage function and donor integration in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile ducts in the recipient's liver using anti-human specific keratin 19 (KRT19) antibody. RESULTS: BA-SHED formed CFU-F, expressed MSC surface markers, and exhibited in vitro mesenchymal multipotency similar to Cont-SHED. BA-SHED showed less in vitro hepatogenic potency than Cont-SHED. Cont-SHED represented in vivo bile drainage function and KRT19-positive biliary regeneration in chronic carbon tetrachloride-induced liver fibrosis model mice. BA-SHED failed to show in vivo biliary potency and bile drainage function compared to Cont-SHED. CONCLUSION: These findings indicate that BA-SHED are not feasible source for BA treatment, because BA-SHED may epigenetically modify the underlying prenatal and perinatal BA environments. In conclusion, these findings suggest that BA-SHED-based studies may provide a platform for understanding the underlying molecular mechanisms of BA development and innovative novel modalities in BA research and treatment.


Asunto(s)
Atresia Biliar , Trasplante de Hígado , Células Madre Mesenquimatosas , Animales , Atresia Biliar/metabolismo , Atresia Biliar/patología , Humanos , Lactante , Cirrosis Hepática/terapia , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre/metabolismo
7.
J Immunol ; 206(12): 3053-3063, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34078710

RESUMEN

Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) is used to treat systemic lupus erythematosus (SLE)-like disorders in MRL/lpr mice. However, the mechanisms underlying the SHED-based therapy remain unclear. In this study, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) ameliorate the SLE-like phenotypes in MRL/lpr mice. SHED-EVs were isolated from the culture supernatant of SHED. SHED-EVs were treated with or without RNase and systemically administered to MRL/lpr mice. Subsequently, recipient bone marrow mesenchymal stem cells (BMMSCs) isolated from SHED-EV-administered MRL/lpr mice were examined for the in vitro and in vivo activity of hematopoietic niche formation and immunoregulation. Furthermore, the recipient BMMSCs were secondarily transplanted into MRL/lpr mice. The systemic SHED-EV infusion ameliorated the SLE-like phenotypes in MRL/lpr mice and improved the functions of recipient BMMSCs by rescuing Tert mRNA-associated telomerase activity, hematopoietic niche formation, and immunoregulation. The secondary transplantation of recipient BMMSCs recovered the immune condition and renal functions of MRL/lpr mice. The RNase treatment depleted RNAs, such as microRNAs, within SHED-EVs, and the RNA-depleted SHED-EVs attenuated the benefits of SHED-EVs in MRL/lpr mice. Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating SLE by targeting the telomerase activity of recipient BMMSCs.


Asunto(s)
Vesículas Extracelulares/inmunología , Lupus Eritematoso Sistémico/inmunología , Nicho de Células Madre/inmunología , Células Madre/inmunología , Telomerasa/inmunología , Diente Primario/inmunología , Animales , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Endogámicos NOD , Ratones SCID
8.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668763

RESUMEN

A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.


Asunto(s)
Pulpa Dental/citología , Enfermedades Genéticas Congénitas/patología , Células Madre Mesenquimatosas/citología , Modelos Biológicos , Diferenciación Celular , Humanos
9.
Stem Cell Res Ther ; 12(1): 57, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33436050

RESUMEN

BACKGROUND: Stem cells from human exfoliated deciduous teeth (SHED) have been reported to show the in vivo and in vitro hepatic differentiation, SHED-Heps; however, the cholangiogenic potency of SHED-Heps remains unclear. Here, we hypothesized that SHED-Heps contribute to the regeneration of intrahepatic bile duct system in chronic fibrotic liver. METHODS: SHED were induced into SHED-Heps under cytokine stimulation. SHED-Heps were intrasplenically transplanted into chronically CCl4-treated liver fibrosis model mice, followed by the analysis of donor integration and hepatobiliary metabolism in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile duct system in the recipient liver. Furthermore, SHED-Heps were induced under the stimulation of tumor necrosis factor alpha (TNFA). RESULTS: The intrasplenic transplantation of SHED-Heps into CCl4-treated mice showed that donor SHED-Heps behaved as human hepatocyte paraffin 1- and human albumin-expressing hepatocyte-like cells in situ and ameliorated CCl4-induced liver fibrosis. Of interest, the integrated SHED-Heps not only expressed biliary canaliculi ATP-binding cassette transporters including ABCB1, ABCB11, and ABCC2, but also recruited human keratin 19- (KRT19-) and KRT17-positive cells, which are considered donor-derived cholangiocytes, regenerating the intrahepatic bile duct system in the recipient liver. Furthermore, the stimulation of TNFA induced SHED-Heps into KRT7- and SRY-box 9-positive cells. CONCLUSIONS: Collectively, our findings demonstrate that infused SHED-Heps showed cholangiogenic ability under the stimulation of TNFA in CCl4-damaged livers, resulting in the regeneration of biliary canaliculi and interlobular bile ducts in chronic fibrotic liver. Thus, the present findings suggest that SHED-Heps may be a novel source for the treatment of cholangiopathy.


Asunto(s)
Hepatocitos , Células Madre , Animales , Diferenciación Celular , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/terapia , Ratones , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Diente Primario
10.
Stem Cell Res Ther ; 11(1): 296, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680564

RESUMEN

BACKGROUND: Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) recovers bone loss in animal models of osteoporosis; however, the mechanisms underlying this remain unclear. Here, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) rescue osteoporotic phenotype. METHODS: EVs were isolated from culture supernatant of SHED. SHED-EVs were treated with or without ribonuclease and systemically administrated into ovariectomized mice, followed by the function of recipient bone marrow mesenchymal stem cells (BMMSCs) including telomerase activity, osteoblast differentiation, and sepmaphorine-3A (SEMA3A) secretion. Subsequently, human BMMSCs were stimulated by SHED-EVs with or without ribonuclease treatment, and then human BMMSCs were examined regarding the function of telomerase activity, osteoblast differentiation, and SEMA3A secretion. Furthermore, SHED-EV-treated human BMMSCs were subcutaneously transplanted into the dorsal skin of immunocompromised mice with hydroxyapatite tricalcium phosphate (HA/TCP) careers and analyzed the de novo bone-forming ability. RESULTS: We revealed that systemic SHED-EV-infusion recovered bone volume in ovariectomized mice and improved the function of recipient BMMSCs by rescuing the mRNA levels of Tert and telomerase activity, osteoblast differentiation, and SEMA3A secretion. Ribonuclease treatment depleted RNAs, including microRNAs, within SHED-EVs, and these RNA-depleted SHED-EVs attenuated SHED-EV-rescued function of recipient BMMSCs in the ovariectomized mice. These findings were supported by in vitro assays using human BMMSCs incubated with SHED-EVs. CONCLUSION: Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating postmenopausal osteoporosis by targeting the telomerase activity of recipient BMMSCs.


Asunto(s)
Vesículas Extracelulares , Osteoporosis , Telomerasa , Animales , Células de la Médula Ósea , Ratones , Osteoporosis/terapia , Células Madre , Telomerasa/genética
11.
Stem Cell Res Ther ; 11(1): 134, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213198

RESUMEN

BACKGROUND: Human deciduous pulp stem cells (hDPSCs) have remarkable stem cell potency associated with cell proliferation, mesenchymal multipotency, and immunosuppressive function and have shown beneficial effects in a variety of animal disease models. Recent studies demonstrated that hDPSCs exhibited in vivo anti-fibrotic and anti-inflammatory action and in vivo hepatogenic-associated liver regeneration, suggesting that hDPSCs may offer a promising source with great clinical demand for treating liver diseases. However, how to manufacture ex vivo large-scale clinical-grade hDPSCs with the appropriate quality, safety, and preclinical efficacy assurances remains unclear. METHODS: We isolated hDPSCs from human deciduous dental pulp tissues formed by the colony-forming unit-fibroblast (CFU-F) method and expanded them under a xenogeneic-free and serum-free (XF/SF) condition; hDPSC products were subsequently stored by two-step banking including a master cell bank (MCB) and a working cell bank (WCB). The final products were directly thawed hDPSCs from the WCB. We tested the safety and quality check, stem cell properties, and preclinical potentials of final hDPSC products and hDPSC products in the MCB and WCB. RESULTS: We optimized manufacturing procedures to isolate and expand hDPSC products under a XF/SF culture condition and established the MCB and the WCB. The final hDPSC products and hDPSC products in the MCB and WCB were validated the safety and quality including population doubling ability, chromosome stability, microorganism safety, and stem cell properties including morphology, cell surface marker expression, and multipotency. We also evaluated the in vivo immunogenicity and tumorigenicity and validated in vivo therapeutic efficacy for liver regeneration in a CCl4-induced chronic liver fibrosis mouse model in the final hDPSC products and hDPSC products in the WCB. CONCLUSION: The manufacture and quality control results indicated that the present procedure could produce sufficient numbers of clinical-grade hDPSC products from a tiny deciduous dental pulp tissue to enhance clinical application of hDPSC products in chronic liver fibrosis.


Asunto(s)
Pulpa Dental , Células Madre , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Cirrosis Hepática/terapia
12.
Pediatr Surg Int ; 35(12): 1379-1388, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31552493

RESUMEN

PURPOSE: Mesenchymal stem cell (MSC)-based cell therapies have emerged as a promising treatment option for various diseases. Due to the superior survival and higher differentiation efficiency, three-dimensional spheroid culture systems have been an important topic of MSC research. Stem cells from human exfoliated deciduous teeth (SHED) have been considered an ideal source of MSCs for regenerative medicine. Thus, in the present study, we introduce our newly developed method for fabricating SHED-based micro-hepatic tissues, and demonstrate the therapeutic effects of SHED-based micro-hepatic tissues in mouse disease models. METHODS: SHED-converted hepatocyte-like cells (SHED-HLCs) were used for fabricating spherical micro-hepatic tissues. The SHED-HLC-based spheroids were then transplanted both into the liver of mice with CCl4-induced chronic liver fibrosis and the kidney of factor VIII (F8)-knock-out mice. At 4 weeks after transplantation, the therapeutic efficacy was investigated. RESULTS: Intrahepatic transplantation of SHED-HLC-spheroids improved the liver dysfunction in association with anti-fibrosis effects in CCl4-treated mice. Transplanted SHED-converted cells were successfully engrafted in the recipient liver. Meanwhile, renal capsular transplantation of the SHED-HLC-spheroids significantly extended the bleeding time in F8-knock-out mice. CONCLUSIONS: These findings suggest that SHED-HLC-based micro-hepatic tissues might be a promising source for treating pediatric refractory diseases, including chronic liver fibrosis and hemophilia A.


Asunto(s)
Hemofilia A/terapia , Cirrosis Hepática/terapia , Trasplante de Células Madre Mesenquimatosas , Esferoides Celulares/trasplante , Diente Primario , Trasplante Heterólogo , Animales , Diferenciación Celular , Niño , Preescolar , Enfermedad Crónica , Modelos Animales de Enfermedad , Hepatocitos , Humanos , Masculino , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Medicina Regenerativa/métodos
13.
Biochem Biophys Rep ; 19: 100648, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31463371

RESUMEN

Metatropic dysplasia is a congenital skeletal dysplasia characterized by severe platyspondyly, dumbbell-like deformity of long tubular bones, and progressive kyphoscoliosis with growth. It is caused by mutations in the gene TRPV4, encoding the transient receptor potential vanilloid 4, which acts as a calcium channel. Many heterozygous single base mutations of this gene have been associated with the disorder, showing autosomal dominant inheritance. Although abnormal endochondral ossification has been observed by histological examination of bone in a patient with lethal metatropic dysplasia, the etiology of the disorder remains largely unresolved. As dental pulp stem cells (DPSCs) are mesenchymal stem cells that differentiate into bone lineage cells, DPSCs derived from patients with congenital skeletal dysplasia might be useful as a disease-specific cellular model for etiological investigation. The purpose of this study was to clarify the pathological association between TRPV4 mutation and chondrocyte differentiation by analyzing DPSCs from a patient with non-lethal metatropic dysplasia. We identified a novel heterozygous single base mutation, c.1855C>T in TRPV4. This was predicted to be a missense mutation, p.L619F, in putative transmembrane segment 5. The mutation was repaired by CRISPR/Cas9 system to obtain isogenic control DPSCs for further analysis. The expression of stem cell markers and fibroblast-like morphology were comparable between patient-derived mutant and control DPSCs, although expression of TRPV4 was lower in mutant DPSCs than control DPSCs. Despite the lower TRPV4 expression in mutant DPSCs, the intracellular Ca2+ level was comparable at the basal level between mutant and control DPSCs, while its level was markedly higher following stimulation with 4α-phorbol 12,13-didecanoate (4αPDD), a specific agonist for TRPV4, in mutant DPSCs than in control DPSCs. In the presence of 4αPDD, we observed accelerated early chondrocyte differentiation and upregulated mRNA expression of SRY-box 9 (SOX9) in mutant DPSCs. Our findings suggested that the novel missense mutation c.1855C>T of TRPV4 was a gain-of-function mutation leading to enhanced intracellular Ca2+ level, which was associated with accelerated chondrocyte differentiation and SOX9 upregulation. Our results also suggest that patient-derived DPSCs can be a useful disease-specific cellular model for elucidating the pathological mechanism of metatropic dysplasia.

14.
J Endod ; 45(5): 591-598.e6, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30952372

RESUMEN

INTRODUCTION: Stem cells isolated from the root apical papilla of human teeth (stem cells from the apical papilla [SCAPs]) are capable of forming tooth root dentin and are a feasible source for bioengineered tooth root regeneration. In this study, we examined the effect of acetylsalicylic acid (ASA) on odontogenic differentiation of SCAPs in vitro and in vivo. METHODS: SCAPs were cultured under odontogenic conditions supplemented with or without ASA. ASA-treated SCAPs were also subcutaneously transplanted into immunocompromised mice. RESULTS: ASA accelerates in vitro and in vivo odontogenic differentiation of SCAPs associated with down-regulation of runt-related nuclear factor 2 and up-regulation of specificity protein 7, nuclear factor I C, and dentin phosphoprotein. ASA up-regulated the phosphorylation of AKT in the odontogenic SCAPs. Of interest, pretreatments with phosphoinositide 3-kinase inhibitor LY294402 and small interfering RNA for AKT promoted ASA-induced in vitro and in vivo odontogenic differentiation of SCAPs. LY294402 and small interfering RNA for AKT also suppressed the ASA-induced expression of runt-related nuclear factor 2 and enhanced ASA-induced expression of specificity protein 7, nuclear factor I C, and dentin phosphoprotein in SCAPs. CONCLUSIONS: These findings suggest that a combination of ASA treatment and suppressive regulation of the phosphoinositide 3-kinase-AKT signaling pathway is a novel approach for SCAP-based tooth root regeneration.


Asunto(s)
Antiinflamatorios no Esteroideos , Aspirina , Papila Dental , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Células Madre , Animales , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Osteogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Biochem Biophys Res Commun ; 513(4): 1048-1054, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31010680

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders and is characterized by impaired attention, hyperactivity, and impulsivity. While multiple etiologies are implicated in ADHD, its underlying mechanism(s) remain unclear. Although previous studies have suggested dysregulation of dopaminergic signals, mitochondria, and brain-derived neurotrophic factor (BDNF) in ADHD, few studies have reported these associations directly. Stem cells from human exfoliated deciduous teeth (SHED) can efficiently differentiate into dopaminergic neurons (DNs) and are thus a useful disease-specific cellular model for the study of neurodevelopmental disorders associated with DN dysfunction. This study aimed to elucidate the relationships between DNs, mitochondria, and BDNF in ADHD by analyzing DNs differentiated from SHED obtained from three boys with ADHD and comparing them to those from three typically developing boys. In the absence of exogenous BDNF in the cell culture media, DNs derived from boys with ADHD (ADHD-DNs) exhibited impaired neurite outgrowth and branching, decreased mitochondrial mass in neurites, and abnormal intracellular ATP levels. In addition, BDNF mRNA was significantly decreased in ADHD-DNs. Supplementation with BDNF, however, significantly improved neurite development and mitochondrial function in ADHD-DNs. These results suggest that ADHD-DNs may have impaired neurite development and mitochondrial function associated with insufficient production of BDNF, which may be improved by exogenous BDNF supplementation. Findings such as these, from patient-derived SHED, may contribute to the future development of treatment strategies for aberrant dopaminergic signaling, mitochondrial functioning, and BDNF levels implicated in ADHD pathogenesis.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/patología , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Pulpa Dental/patología , Neuronas Dopaminérgicas/patología , Neuritas/efectos de los fármacos , Células Madre/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Estudios de Casos y Controles , Células Cultivadas , Niño , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/ultraestructura , Humanos , Masculino , Mitocondrias/patología , Neuritas/ultraestructura , Diente Primario
16.
Surg Today ; 49(4): 316-322, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30834983

RESUMEN

Stem cells from human exfoliated deciduous teeth (SHEDs), being a type of mesenchymal stem cell, are an ideal cell source for regenerative medicine. They have minimal risk of oncogenesis, high proliferative capacity, high multipotency, and immunosuppressive ability. Stem cell transplantation using SHED has been found to have an anti-fibrotic effect on liver fibrosis in mice. SHED transplantation and the bio 3D printer, which can create scaffold-free 3-D images of the liver and diaphragm, provide a new innovative treatment modality for intractable pediatric surgical diseases such as biliary atresia and diaphragmatic hernia.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Pediatría , Medicina Regenerativa/métodos , Células Madre , Ingeniería de Tejidos/métodos , Exfoliación Dental , Diente Primario/citología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Niño , Hepatocitos/trasplante , Humanos , Japón , Hígado , Trasplante de Hígado , Ratones , Impresión Tridimensional
17.
Sci Rep ; 9(1): 1535, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733544

RESUMEN

Wilson's disease (WD) is an inherited metabolic disease arising from ATPase copper transporting beta gene (ATP7B) mutation. Orthotoropic liver transplantation is the only radical treatment of fulminant WD, although appropriate donors are lacking at the onset of emergency. Given the hepatogenic capacity and tissue-integration/reconstruction ability in the liver of stem cells from human exfoliated deciduous teeth (SHED), SHED have been proposed as a source for curing liver diseases. We hypothesized the therapeutic potential of SHED and SHED-converted hepatocyte-like- cells (SHED-Heps) for fulminant WD. SHED and SHED-Heps were transplanted into WD model Atp7b-mutated Long-Evans Cinnamon (LEC) rats received copper overloading to induce a lethal fulminant liver failure. Due to the superior copper tolerance via ATP7B, SHED-Hep transplantation gave more prolonged life-span of fulminant LEC rats than SHED transplantation. The integrated ATP7B-expressing SHED-Heps showed more therapeutic effects on to restoring the hepatic dysfunction and tissue damages in the recipient liver than the integrated naïve SHED without ATP7B expression. Moreover, SHED-Heps could reduce copper-induced oxidative stress via ATP7B- independent stanniocalcin 1 secretion in the fulminant LEC rats, suggesting a possible role for paracrine effect of the integrated SHED-Heps. Taken together, SHED-Heps offer a potential of functional restoring, bridging, and preventive approaches for treating fulminant WD.


Asunto(s)
Hepatocitos/trasplante , Degeneración Hepatolenticular/terapia , Células Madre/citología , Diente Primario/citología , Animales , Diferenciación Celular , Cobre/toxicidad , ATPasas Transportadoras de Cobre/antagonistas & inhibidores , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Modelos Animales de Enfermedad , Glicoproteínas/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Degeneración Hepatolenticular/mortalidad , Degeneración Hepatolenticular/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Estrés Oxidativo/efectos de los fármacos , Comunicación Paracrina , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Endogámicas LEC , Células Madre/metabolismo , Tasa de Supervivencia
18.
Nutrients ; 11(12)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888201

RESUMEN

This review focuses on mechanisms of calorie restriction (CR), particularly the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis as an evolutionary conserved signal that regulates aging and lifespan, underlying the effects of CR in mammals. Topics include (1) the relation of the GH-IGF-1 signal with chronic low-level inflammation as one of the possible causative factors of aging, that is, inflammaging, (2) the isoform specificity of the forkhead box protein O (FoxO) transcription factors in CR-mediated regulation of cancer and lifespan, (3) the role for FoxO1 in the tumor-inhibiting effect of CR, (4) pleiotropic roles for FoxO1 in the regulation of disorders, and (5) sirtuin (Sirt) as a molecule upstream of FoxO. From the evolutionary view, the necessity of neuropeptide Y (Npy) for the effects of CR and the pleiotropic roles for Npy in life stages are also emphasized. Genes for mediating the effects of CR and regulating aging are context-dependent, particularly depending on nutritional states.


Asunto(s)
Envejecimiento/fisiología , Antineoplásicos/metabolismo , Restricción Calórica , Esperanza de Vida , Longevidad/fisiología , Animales , Hormona del Crecimiento/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transducción de Señal
19.
Biochem Biophys Res Commun ; 508(3): 850-856, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30528238

RESUMEN

Enzymatic antioxidant systems, mainly involving mitochondria, are critical for minimizing the harmful effects of reactive oxygen species, and these systems are enhanced by interactions with nonenzymatic antioxidant nutrients. Because fetal growth requires extensive mitochondrial respiration, pregnant women and fetuses are at high risk of exposure to excessive reactive oxygen species. The enhancement of the antioxidant system, e.g., by nutritional management, is therefore critical for both the mother and fetus. Folic acid supplementation prevents homocysteine accumulation and epigenetic dysregulation associated with one-carbon metabolism. However, few studies have examined the antioxidant effects of folic acid for healthy pregnancy outcomes. The purpose of this study was to elucidate the association between the antioxidant effect of folic acid and mitochondria in undifferentiated cells during fetal growth. Neural crest-derived dental pulp stem cells of human exfoliated deciduous teeth were used as a model of undifferentiated cells in the fetus. Pyocyanin induced excessive reactive oxygen species, resulting in a decrease in cell growth and migration accompanied by mitochondrial fragmentation and inactivation in dental pulp stem cells. This damage was significantly improved by folic acid, along with decreased mitochondrial reactive oxygen species, PGC-1α upregulation, DRP1 downregulation, mitochondrial elongation, and increased ATP production. Folic acid may protect undifferentiated cells from oxidative damage by targeting mitochondrial activation. These results provide evidence for a new benefit of folic acid in pregnant women and fetuses.


Asunto(s)
Antioxidantes/farmacología , Pulpa Dental/citología , Ácido Fólico/farmacología , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Madre/efectos de los fármacos , Diente Primario/citología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Niño , Humanos , Piocianina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/citología , Células Madre/metabolismo
20.
Biochem Biophys Rep ; 17: 32-37, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30533535

RESUMEN

Leigh syndrome is a highly heterogeneous condition caused by pathological mutations in either nuclear or mitochondrial DNA regions encoding molecules involved in mitochondrial oxidative phosphorylation, in which many organs including the brain can be affected. Among these organs, a high incidence of poor bone health has been recognized in primary mitochondrial diseases including Leigh syndrome. However, the direct association between mitochondrial dysfunction and poor bone health has not been fully elucidated. Mitochondrial biosynthesis is a potential therapeutic target for this syndrome, as it can ameliorate the impairment of oxidative phosphorylation without altering these gene mutations. A recent study has shown the impaired osteogenesis in the dental pulp stem cells derived from the deciduous teeth of a child with Leigh syndrome, harboring the heteroplasmic mutation G13513A in the mitochondrial DNA region encoding the ND5 subunit of the respiratory chain complex I. The present study aimed to investigate whether mitochondrial biogenesis could be a therapeutic target for improving osteogenesis, using the same stem cells in a patient-specific cellular model. For this purpose, bezafibrate was used because it has been reported to induce mitochondrial biogenesis as well as to improve bone metabolism and osteoporosis. Bezafibrate clearly improved the differentiation of patient-derived stem cells into osteoblasts and the mineralization of differentiated osteoblasts. The mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α, ATP production, and mitochondrial Ca2+ levels were all significantly increased by bezafibrate in the patient-derived cells. In addition, the increased amount and morphological shift from the fragmentary to network shape associated with DRP1 downregulation were also observed in the bezafibrate-treated patient-derived cells. These results suggest that mitochondrial biogenesis may be a potential therapeutic target for improving osteogenesis in patients with Leigh syndrome, and bezafibrate may be one of the candidate treatment agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...