Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Front Immunol ; 15: 1332922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545099

RESUMEN

LTX-315 is a synthetic cationic oncolytic peptide with potent anticancer activity but limited toxicity for non-malignant cells. LTX-315 induces both immunogenic tumor cell death and generation of tumor-specific immune responses in multiple experimental tumor models. Given the central role of dendritic cell (DC) maturation in the induction of antigen-specific immunity, we investigated the effect of LTX-315 treatment on the maturation of tumor-infiltrating DCs (TiDCs) and the generation of anti-melanoma immunity. We found that LTX-315 treatment induces the maturation of DCs, both indirectly through the release of cancer cell-derived damage-associated molecular patterns (DAMPs)/alarmins and nucleic acids (DNA and RNA) capable of triggering distinct Toll-like receptor (TLR) signaling, and, directly by activating TLR7. The latter results in the ignition of multiple intracellular signaling pathways that promotes DC maturation, including NF-κB, mitogen activated protein kinases (MAPKs), and inflammasome signaling, as well as increased type 1 interferon production. Critically, the effects of LTX-315 on DCs the consequent promotion of anti-melanoma immunity depend on the cytosolic signal transducer myeloid differentiation response gene 88 (MyD88). These results cast light on the mechanisms by which LTX-315 induces DC maturation and hence elicits anticancer immunity, with important implications for the use of LTX-315 as an anticancer immunotherapeutic.


Asunto(s)
Células Dendríticas , Factor 88 de Diferenciación Mieloide , Oligopéptidos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores Toll-Like/metabolismo
2.
Immunol Rev ; 321(1): 20-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679959

RESUMEN

Cancer cells undergoing immunogenic cell death (ICD) can initiate adaptive immune responses against dead cell-associated antigens, provided that (1) said antigens are not perfectly covered by central tolerance (antigenicity), (2) cell death occurs along with the emission of immunostimulatory cytokines and damage-associated molecular patterns (DAMPs) that actively engage immune effector mechanisms (adjuvanticity), and (3) the microenvironment of dying cells is permissive for the initiation of adaptive immunity. Finally, ICD-driven immune responses can only operate and exert cytotoxic effector functions if the microenvironment of target cancer cells enables immune cell infiltration and activity. Multiple forms of radiation, including non-ionizing (ultraviolet) and ionizing radiation, elicit bona fide ICD as they increase both the antigenicity and adjuvanticity of dying cancer cells. Here, we review the molecular determinants of ICD as elicited by radiation as we critically discuss strategies to reinforce the immunogenicity of cancer cells succumbing to clinically available radiation strategies.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Muerte Celular Inmunogénica , Muerte Celular , Inmunidad Adaptativa , Microambiente Tumoral
3.
Cureus ; 15(11): e48524, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074056

RESUMEN

Spindle cell hemangioma (SCH) is an exceptionally uncommon vascular neoplasm, primarily manifesting on the extremities. This article delves into a singular case of a 20-year-old female presenting with erythema and discomfort in the left palm, diagnosed with SCH. Post-consultation with a dermatologic neoplasm consortium, she underwent a comprehensive excision, followed by a bi-phasic skin graft. Despite non-clear surgical perimeters, the patient, five years post-procedure, has experienced neither re-emergence nor functional encumbrance. The discussion emphasizes the notable recurrence propensity of SCH, with a historical recurrence rate surpassing 50%, and underscores the importance of an interdisciplinary strategy, enduring surveillance, and bespoke therapeutic decisions for management. The paper concludes by advocating for augmented research and expansive case compilations to enhance therapeutic paradigms for such atypical vascular lesions.

4.
Cureus ; 15(6): e41163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37525807

RESUMEN

BACKGROUND: Salvage procedures for distal radioulnar joint (DRUJ) arthritis, like the Darrach or Sauvé-Kapandji (S-K) procedures, often result in extensor tendon ruptures at the ulnar stump. Radioulnar instability is considered the underlying cause and stump stabilization techniques are employed. This study investigated radioulnar instability, extensor tendon irritation, and the effectiveness of stump stabilization techniques following salvage procedures. METHODS: Six upper limbs from three cadavers were used. Forearm rotation was measured using magnetic position sensors to assess radial movement. The Darrach procedure was performed on two limbs, comparing radial motion ranges for different ulnar osteotomy positions. The risk of tendon rupture was assessed with applied weight. The S-K procedure was performed on four limbs, evaluating stump stabilization techniques and radial movement distance underweight. RESULTS: Proximal osteotomy positions increased radial motion range. Extensor tendon irritation occurred when the load was applied to the volar and ulnar sides, particularly with a pronated forearm. Stump stabilization techniques did not significantly contribute to ulnar stump stabilization. CONCLUSIONS: Proximal ulnar osteotomy positions in DRUJ salvage procedures led to increased radioulnar instability and potential complications. Load application on the volar and ulnar sides, especially in a pronated forearm, increased the risk of tendon rupture. Stump stabilization techniques showed limited utility in stabilizing the ulnar stump or reducing complications. These findings can inform strategies for minimizing complications in DRUJ salvage procedures.

5.
Cancer Discov ; 13(11): 2448-2469, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37623817

RESUMEN

We developed a phenotypic screening platform for the functional exploration of dendritic cells (DC). Here, we report a genome-wide CRISPR screen that revealed BCL2 as an endogenous inhibitor of DC function. Knockout of BCL2 enhanced DC antigen presentation and activation as well as the capacity of DCs to control tumors and to synergize with PD-1 blockade. The pharmacologic BCL2 inhibitors venetoclax and navitoclax phenocopied these effects and caused a cDC1-dependent regression of orthotopic lung cancers and fibrosarcomas. Thus, solid tumors failed to respond to BCL2 inhibition in mice constitutively devoid of cDC1, and this was reversed by the infusion of DCs. Moreover, cDC1 depletion reduced the therapeutic efficacy of BCL2 inhibitors alone or in combination with PD-1 blockade and treatment with venetoclax caused cDC1 activation, both in mice and in patients. In conclusion, genetic and pharmacologic BCL2 inhibition unveils a DC-specific immune checkpoint that restrains tumor immunosurveillance. SIGNIFICANCE: BCL2 inhibition improves the capacity of DCs to stimulate anticancer immunity and restrain cancer growth in an immunocompetent context but not in mice lacking cDC1 or mature T cells. This study indicates that BCL2 blockade can be used to sensitize solid cancers to PD-1/PD-L1-targeting immunotherapy. This article is featured in Selected Articles from This Issue, p. 2293.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Animales , Ratones , Células Dendríticas , Receptor de Muerte Celular Programada 1 , Monitorización Inmunológica , Ratones Noqueados , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/genética
6.
NPJ Urban Sustain ; 3(1): 4, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521202

RESUMEN

Urban agriculture is the key to creating healthy cities and developing resilient urban food systems in uncertain times. However, relevant empirical evidence is limited. This study quantitatively verified the association of access to local food through urban agriculture with subjective well-being, physical activity, and food security concerns of neighborhood communities in the context of the COVID-19 pandemic. The target was Tokyo, Japan, where small-scale local food systems are widespread in walkable neighborhoods. We found that diversity in local food access, ranging from self-cultivation to direct-to-consumer sales, was significantly associated with health and food security variables. In particular, the use of allotment farms was more strongly associated with subjective well-being than the use of urban parks, and it was more strongly associated with the mitigation of food security concerns than the use of food retailers. These findings provide robust evidence for the effectiveness of integrating urban agriculture into walkable neighborhoods.

7.
Cell Death Dis ; 14(5): 305, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142568

RESUMEN

Autologous T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19 are approved for the treatment of various CD19+ hematological malignancies. While CAR T cells induce objective responses in a majority of patients, relapse frequently occurs upon loss of CD19 expression by neoplastic cells. Radiation therapy (RT) has been successfully employed to circumvent the loss of CAR targets in preclinical models of pancreatic cancer. At least in part, this reflects the ability of RT to elicit death receptor (DR) expression by malignant cells, enabling at least some degree of CAR-independent tumor killing. In a human model of CD19+ acute lymphoblastic leukemia (ALL), we also observed DR upregulation by RT, both in vitro and in vivo. Moreover, low-dose total body irradiation (LD-TBI) delivered to ALL-bearing mice prior to CAR T cell infusion considerably extended the overall survival benefit afforded by CAR T cells alone. Such an improved therapeutic activity was accompanied by a superior expansion of CAR T cells in vivo. These data encourage the initiation of clinical trials combining LD-TBI with CAR T cells in patients with hematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Linfocitos T , Receptores de Antígenos de Linfocitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Inmunoterapia Adoptiva
8.
J Transl Med ; 21(1): 110, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765430

RESUMEN

BACKGROUND: Preclinical evidence from us and others demonstrates that the anticancer effects of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors can be enhanced with focal radiation therapy (RT), but only when RT is delivered prior to (rather than after) CDK4/6 inhibition. Depending on tumor model, cellular senescence (an irreversible proliferative arrest that is associated with the secretion of numerous bioactive factors) has been attributed beneficial or detrimental effects on response to treatment. As both RT and CDK4/6 inhibitors elicit cellular senescence, we hypothesized that a differential accumulation of senescent cells in the tumor microenvironment could explain such an observation, i.e., the inferiority of CDK4/6 inhibition with palbociclib (P) followed by RT (P→RT) as compared to RT followed by palbociclib (RT→P). METHODS: The impact of cellular senescence on the interaction between RT and P was assessed by harnessing female INK-ATTAC mice, which express a dimerizable form of caspase 8 (CASP8) under the promoter of cyclin dependent kinase inhibitor 2A (Cdkn2a, coding for p16Ink4), as host for endogenous mammary tumors induced by the subcutaneous implantation of medroxyprogesterone acetate (MPA, M) pellets combined with the subsequent oral administration of 7,12-dimethylbenz[a]anthracene (DMBA, D). This endogenous mouse model of HR+ mammary carcinogenesis recapitulates key immunobiological aspects of human HR+ breast cancer. Mice bearing M/D-driven tumors were allocated to RT, P or their combination in the optional presence of the CASP8 dimerizer AP20187, and monitored for tumor growth, progression-free survival and overall survival. In parallel, induction of senescence in vitro, in cultured human mammary hormone receptor (HR)+ adenocarcinoma MCF7 cells, triple negative breast carcinoma MDA-MB-231 cells and mouse HR+ mammary carcinoma TS/A cells treated with RT, P or their combination, was determined by colorimetric assessment of senescence-associated ß-galactosidase activity after 3 or 7 days of treatment. RESULTS: In vivo depletion of p16Ink4-expressing (senescent) cells ameliorated the efficacy of P→RT (but not that of RT→P) in the M/D-driven model of HR+ mammary carcinogenesis. Accordingly, P→RT induced higher levels of cellular senescence than R→TP in cultured human and mouse breast cancer cell lines. CONCLUSIONS: Pending validation in other experimental systems, these findings suggest that a program of cellular senescence in malignant cells may explain (at least partially) the inferiority of P→RT versus RT→P in preclinical models of HR+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Ratones , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Quinasa 6 Dependiente de la Ciclina , Senescencia Celular/fisiología , Proteínas Portadoras/metabolismo , Carcinogénesis , Microambiente Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo
9.
Methods Cell Biol ; 174: 93-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36710054

RESUMEN

Mitophagy is a finely regulated mechanism through which eukaryotic cells selectively dispose of supernumerary, permeabilized or otherwise damaged mitochondria through lysosomal degradation. Dysfunctional mitochondria are prone to release potentially cytotoxic factors including reactive oxygen species (ROS) and caspase activators, such as cytochrome c, somatic (CYCS). Thus, proficient mitophagic responses mediate prominent cytoprotective functions. Moreover, the rapid degradation of permeabilized mitochondria limits the release of mitochondrial components that may drive inflammatory reactions, such as mitochondrial DNA (mtDNA) and transcription factor A, mitochondrial (TFAM), implying that mitophagy also mediates potent anti-inflammatory effects. Here, we detail a simple, flow cytometry-assisted protocol for the specific measurement of mitophagic responses as driven by radiation therapy (RT) in mouse hormone receptor (HR)+ mammary carcinoma TS/A cells. With some variations, this method - which relies on the mitochondria-restricted expression of a fluorescent reporter that is sensitive to pH and hence changes excitation wavelength within lysosomes (mt-mKeima) - can be adapted to a variety of human and mouse cancer cell lines and/or straightforwardly implemented on fluorescence microscopy platforms.


Asunto(s)
Mitofagia , Neoplasias , Ratones , Humanos , Animales , Mitofagia/genética , Mitocondrias/metabolismo , Línea Celular , ADN Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Autofagia , Neoplasias/metabolismo
10.
Trends Cancer ; 9(2): 93-95, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36543690

RESUMEN

When used according to specific dose/fractionation schedules, focal radiotherapy can elicit a systemic anticancer immune response that limits the growth of distant, non-irradiated tumors. Recent data suggest that, at least in some settings, intratumoral macrophages can be educated by CD47 blockage to promote such an 'abscopal' response independent of CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Neoplasias/patología , Fraccionamiento de la Dosis de Radiación
11.
Nat Rev Immunol ; 23(3): 159-173, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35879417

RESUMEN

Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Mitocondrias/metabolismo , Inflamación/patología , Alarminas , Neoplasias/patología
12.
Methods Cell Biol ; 172: 1-16, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36064218

RESUMEN

Radiation therapy (RT) is well known for its capacity to mediate cytostatic and cytotoxic effects upon the accumulation of unrepaired damage to macromolecules, notably DNA. The ability of ionizing radiation to prevent malignant cells from replicating and to cause their demise is indeed an integral component of the anticancer activity of RT. Neoplastic cells are generally more sensitive to the cytostatic and cytotoxic effects of RT than their healthy counterparts as they exhibit increased proliferative rate and limited capacity for DNA repair. This provides a rather comfortable therapeutic window for clinical RT usage, especially with the development of novel, technologically superior RT modalities that minimize the exposure of normal tissues. Thus, while accumulating evidence indicates that cancer control by RT also involves the activation of tumor-targeting immune responses, assessing cell cycle progression in irradiated cells remains a central approach for investigating radiosensitivity in preclinical tumor models. Here, we detail a simple, flow cytometry-assisted method to simultaneously assess cell cycle distribution and active DNA replication in cultured estrogen receptor (ER)+ breast cancer MCF7 cells. With minimal variations, the same technique can be straightforwardly implemented to a large panel of human and mouse cancer cell lines.


Asunto(s)
Citostáticos , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Reparación del ADN , Humanos , Ratones , Tolerancia a Radiación
13.
Methods Cell Biol ; 172: 115-134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36064219

RESUMEN

When employed according to specific doses and fractionation schedules, radiation therapy (RT) elicits potent tumor-targeting immune responses that rely on the secretion of type I interferon (IFN) by irradiated cancer cells. Most often, this is initiated by the ability of RT to promote the cytosolic accumulation of double-stranded DNA (dsDNA) molecules, which are detected by cyclic GMP-AMP synthase (CGAS) to engage the stimulator of interferon response cGAMP interactor 1 (STING1)-dependent transactivation of type I IFN-coding genes via interferon regulatory factor 3 (IRF3). Here, we describe a simple protocol for the quantification of cytosolic dsDNA species by immunofluorescence microscopy coupled to automated image analysis, as enabled by precise sample processing conditions that permeabilize plasma-but not nuclear or inner mitochondrial-membranes. As compared to subcellular fractionation-based techniques, this approach is compatible with assessments in individual cells aimed at gauging inter-cellular heterogeneity, as well as subcellular tests including co-localization studies.


Asunto(s)
Interferón Tipo I , Núcleo Celular , Citosol , ADN , Microscopía Fluorescente
14.
Methods Cell Biol ; 172: 145-161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36064221

RESUMEN

It is now clear that radiation therapy (RT) can be delivered in doses and according to fractionation schedules that actively elicit immunostimulatory effects. While such effects are often sufficient to drive potent anticancer immunity culminating with systemic disease eradication, the immunostimulatory activity of RT stands out as a promising combinatorial partner for bona fide immunotherapeutics including immune checkpoint inhibitors (ICIs). Accumulating preclinical and clinical evidence indicates that the secretion of type I interferon (IFN) by irradiated cancer cells is a sine qua non for RT to initiate ICI-actionable tumor-targeting immune responses. Here, we detail a simple protocol to quantitatively assess type I IFN responses in irradiated mouse hormone receptor (HR)+ TS/A cells by RT-PCR. With minimal variations, the same technique can be straightforwardly adapted to quantify type I IFN-associated transcriptional responses in a variety of human and mouse cancer cells maintained in vitro.


Asunto(s)
Neoplasias , Animales , Humanos , Ratones , Neoplasias/genética , Neoplasias/radioterapia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Methods Cell Biol ; 172: 17-36, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36064223

RESUMEN

Radiation therapy (RT) is well known for its capacity to mediate cytostatic and cytotoxic effects on malignant cells, largely reflecting the ability of ionizing radiation to cause direct and indirect damage to macromolecules including DNA and lipids. While low-dose RT generally causes limited cytotoxicity in an acute manner (as it imposes insufficient cellular damage to compromise homeostasis, or instead induces the delayed demise of cells that fail to complete mitosis successfully), high RT doses can mediate an acute wave of cell death that begins to manifest shortly (24-72h) after irradiation. Here, we provide two straightforward techniques to assess the acute cytotoxic effects of RT by the flow cytometry-assisted quantification of plasma membrane permeabilization (PMP, a late-stage manifestation of cell death) and either mitochondrial outer membrane permeabilization (MOMP) or phosphatidylserine (PS) externalization (two early-stage signs of cell death) in mouse mammary adenocarcinoma TS/A cells. With minor variations, the same protocols can be straightforwardly adapted to measure acute cell death responses as elicited by RT in a large panel of human and mouse cancer cells lines of different histological derivation.


Asunto(s)
Apoptosis , Fosfatidilserinas , Animales , Anexina A5/metabolismo , Anexina A5/farmacología , Apoptosis/fisiología , Muerte Celular , Citometría de Flujo/métodos , Humanos , Ratones
16.
Sci Immunol ; 7(74): eabl3795, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35984892

RESUMEN

A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death. Increased MHC-II presentation of PDIA3 peptides was associated with antigen-specific proliferation of hepatic CD4+ immune infiltrates and isotype switch of anti-PDIA3 antibodies from IgM to IgG3, indicative of cellular and humoral PDIA3 autoreactivity. Passive transfer of PDIA3-specific T cells or PDIA3-specific antibodies also exacerbated hepatocyte death, as determined by increased hepatic transaminases detected in the sera of mice subjected to an HFHF but not control diet. Increased humoral responses to PDIA3 were also observed in patients with chronic inflammatory liver conditions, including autoimmune hepatitis, primary biliary cholangitis, and type 2 diabetes. Together, our data indicated that metabolic insults caused by an HFHF diet elicited liver damage and promoted pathogenic immune autoreactivity driven by T and B cell PDIA3 epitopes.


Asunto(s)
Autoinmunidad , Diabetes Mellitus Tipo 2 , Hígado , Proteína Disulfuro Isomerasas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Epítopos , Antígenos de Histocompatibilidad Clase II , Hígado/patología , Ratones , Péptidos , Proteína Disulfuro Isomerasas/inmunología , Proteína Disulfuro Isomerasas/metabolismo
17.
Clin Neuropharmacol ; 45(3): 72-73, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35579487

RESUMEN

OBJECTIVES: The aims of the study were to report brexpiprazole-induced Pisa syndrome (PS) in a patient with Alzheimer disease and to discuss the pathophysiology and the treatment of PS. METHODS: We report a 71-year-old female patient with Alzheimer disease. After 2 months medication of brexpiprazole, she presented PS. By switching to quetiapine, the symptom was ameliorated; however, transient acute dystonia was occurred. CONCLUSIONS: Drug-induced PS may be associated with dopamine-acetylcholine imbalance. This imbalance causes the dysfunction of the cortex and basal ganglia and the dysfunction of sensory and somatosensory system. Stopping the offending drugs is a choice for the treatment of PS. This is the first report of PS-induced brexpiprazole.


Asunto(s)
Enfermedad de Alzheimer , Antipsicóticos , Distonía , Quinolonas , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Antipsicóticos/efectos adversos , Distonía/inducido químicamente , Distonía/tratamiento farmacológico , Femenino , Humanos , Fumarato de Quetiapina/uso terapéutico , Quinolonas/efectos adversos , Síndrome , Tiofenos
18.
J Alzheimers Dis ; 88(1): 75-95, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35570493

RESUMEN

BACKGROUND: Probiotics have been reported to ameliorate cognitive impairment. OBJECTIVE: We investigated the effect of the probiotic strain Bifidobacterium breve MCC1274 (A1) in enhancing cognition and preventing brain atrophy of older patients with mild cognitive impairment (MCI). METHODS: In this RCT, 130 patients aged from 65 to 88 years old with suspected MCI received once daily either probiotic (B. breve MCC1274, 2×1010 CFU) or placebo for 24 weeks. Cognitive functions were assessed by ADAS-Jcog and MMSE tests. Participants underwent MRI to determine brain atrophy changes using Voxel-based Specific Regional Analysis System for Alzheimer's disease (VSRAD). Fecal samples were collected for the analysis of gut microbiota composition. RESULTS: Analysis was performed on 115 participants as the full analysis set (probiotic 55, placebo 60). ADAS-Jcog subscale "orientation" was significantly improved compared to placebo at 24 weeks. MMSE subscales "orientation in time" and "writing" were significantly improved compared to placebo in the lower baseline MMSE (< 25) subgroup at 24 weeks. VSRAD scores worsened in the placebo group; probiotic supplementation tended to suppress the progression, in particular among those subjects with progressed brain atrophy (VOI Z-score ≥1.0). There were no marked changes in the overall composition of the gut microbiota by the probiotic supplementation. CONCLUSION: Improvement of cognitive function was observed on some subscales scores only likely due to the lower sensitiveness of these tests for MCI subjects. Probiotics consumption for 24 weeks suppressed brain atrophy progression, suggesting that B. breve MCC1274 helps prevent cognitive impairment of MCI subjects.


Asunto(s)
Bifidobacterium breve , Disfunción Cognitiva , Probióticos , Anciano , Anciano de 80 o más Años , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/prevención & control , Método Doble Ciego , Humanos , Probióticos/uso terapéutico
20.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163375

RESUMEN

Lactobacillus paracasei KW3110 (KW3110) has anti-inflammatory effects, including the prevention of blue light exposure induced retinal inflammation and ageing-related chronic inflammation in mice. The mechanism involves the promotion of anti-inflammatory cytokine interleukin (IL)-10 production by KW3110, leading to reduced pro-inflammatory cytokine IL-1ß production. Although various stress-induced mitochondrial damages are associated with excessive inflammatory responses, the effect of KW3110 on inflammatory-stress-induced mitochondrial damage remains unknown. In this study, we investigated the effect of KW3110 on inflammatory stress-induced mitochondrial damage using the murine macrophage-like cell line J774A.1. KW3110 treatment suppressed lipopolysaccharide (LPS)-induced mitochondrial dysfunction, including downregulation of membrane potential, induction of reactive oxygen species, and respiratory dysfunction. In addition, KW3110 prevented LPS-induced disruption of mitochondrial morphology including cristae structures. IL-10 treatment also ameliorated LPS-induced mitochondrial dysfunction and morphology disruption. These results suggest that KW3110 prevents LPS-induced mitochondrial dysfunction, potentially via promoting IL-10 production in mouse macrophages. We are the first to reveal a suppressive effect of lactic acid bacteria on mitochondrial morphology disruption in inflammatory-stressed macrophages. Our findings contribute to understanding inflammatory-stress-induced mitochondrial damage and developing food ingredients with preventive effects on mitochondrial-damage-derived inflammatory conditions.


Asunto(s)
Interleucina-10/metabolismo , Lacticaseibacillus paracasei/fisiología , Lipopolisacáridos/efectos adversos , Macrófagos/citología , Mitocondrias/metabolismo , Animales , Antiinflamatorios/metabolismo , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Probióticos , Piroptosis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...