Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528120

RESUMEN

Exportin-1 (XPO1/CRM1) plays a central role in the nuclear-to-cytoplasmic transport of hundreds of proteins and contributes to other cellular processes, such as centrosome duplication. Small molecules targeting XPO1 induce cytotoxicity, and selinexor was approved by the Food and Drug Administration in 2019 as a cancer chemotherapy for relapsed multiple myeloma. Here, we describe a cell-type-dependent chromatin-binding function for XPO1 that is essential for the chromatin occupancy of NFAT transcription factors and thus the appropriate activation of T cells. Additionally, we establish a class of XPO1-targeting small molecules capable of disrupting the chromatin binding of XPO1 without perturbing nuclear export or inducing cytotoxicity. This work defines a broad transcription regulatory role for XPO1 that is essential for T cell activation as well as a new class of XPO1 modulators to enable therapeutic targeting of XPO1 beyond oncology including in T cell-driven autoimmune disorders.

2.
ACS Chem Biol ; 19(4): 896-907, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38506663

RESUMEN

Cancer cell culture models frequently rely on fetal bovine serum as a source of protein and lipid factors that support cell survival and proliferation; however, serum-containing media imperfectly mimic the in vivo cancer environment. Recent studies suggest that typical serum-containing cell culture conditions can mask cancer dependencies, for example, on cholesterol biosynthesis enzymes, that exist in vivo and emerge when cells are cultured in media that provide more realistic levels of lipids. Here, we describe a high-throughput screen that identified fenretinide and ivermectin as small molecules whose cytotoxicity is greatly enhanced in lipid-restricted media formulations. The mechanism of action studies indicates that ivermectin-induced cell death involves oxidative stress, while fenretinide likely targets delta 4-desaturase, sphingolipid 1, a lipid desaturase necessary for ceramide synthesis, to induce cell death. Notably, both fenretinide and ivermectin have previously demonstrated in vivo anticancer efficacy despite their low cytotoxicity under typical cell culture conditions. These studies suggest ceramide synthesis as a targetable vulnerability of cancer cells cultured under lipid-restricted conditions and reveal a general screening strategy for identifying additional cancer dependencies masked by the superabundance of medium lipids.


Asunto(s)
Medios de Cultivo , Lípidos , Neoplasias , Humanos , Ceramidas/metabolismo , Medios de Cultivo/química , Ácido Graso Desaturasas , Fenretinida/farmacología , Ivermectina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Esfingolípidos , Lípidos/química , Antineoplásicos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Línea Celular Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...