Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(32): e2312135, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38501794

RESUMEN

Carbon fiber (CF) is a potential microwave absorption (MA) material due to the strong dielectric loss. Nevertheless, owing to the high conductivity, poor impedance matching of carbon-based  materials results in limited MA performance. How to solve this problem and achieve excellent MA performance remains a principal challenge. Herein, taking full advantage of CF and excellent impedance matching of bimetallic metal-organic frameworks (MOF) derivatives layer, an excellent microwave absorber based on micron-scale 1D CF and NiCoMOF (CF@NiCoMOF-800) is developed. After adjusting the oxygen vacancies of the bimetallic MOF, the resultant microwave absorber presented excellent MA properties including the minimum reflection loss (RLmin) of -80.63 dB and wide effective absorption bandwidth (EAB) of 8.01 GHz when its mass percent is only 5 wt.% and the thickness is 2.59 mm. Simultaneously, the mechanical properties of the epoxy resin (EP)-based coating with this microwave absorber are effectively improved. The hardness (H), elastic modulus (E), bending strength, and compressive strength of CF@NiCoMOF-800/EP coating are 334 MPa, 5.56 GPa, 82.2 MPa, and 135.8 MPa, which is 38%, 15%, 106% and 53% higher than EP coating. This work provides a promising solution for carbon materials achieving excellent MA properties and mechanical properties.

2.
ACS Appl Mater Interfaces ; 16(5): 6462-6473, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266189

RESUMEN

The peelable microwave absorption (MA) coating with reversible adhesion for stable presence on substrates and easy release without any residuals is highly desired in temporary electromagnetic protection, which can quickly enter and disengage the electromagnetic protection state according to the real-time changeable harsh surroundings. On the contrary, with the incorporation of abundant absorbent to achieve excellent MA ability, the tunable adhesion and sufficient cohesion are extremely challenging to fulfill the above requirement. The reported peelable coatings still have problems in controlling adhesion/cohesion strength and coating release, facing substantial residuals after peeling even using complex chemical modification or abundant additives. Herein, a peelable MA coating based on the block characteristics of polar and nonpolar segments of poly(styrene-(ethylene-co-butylene)-styrene) (SEBS) is successfully developed. The polyaniline-decorated carbon nanotube as a microwave absorber plays a positive influence on the adhesion/cohesion of the coating due to bonding interaction. The competitive effective absorption bandwidth (EAB) of 8.8 GHz and controllable yet reversible adhesion release on various substrates and complex surfaces have been achieved. The reusability endows peelable MA coating with 93% retention of EAB even after ten coating-peeling cycles. The coating with excellent chemical and adhesion stability can effectively protect substrates from salt/acid/alkali corrosion, showing over 98% retention of EAB even after 8 h of accelerated corrosion. Our peelable MA coating via a general yet reliable approach provides a prospect for temporary electromagnetic protection.

3.
ACS Appl Mater Interfaces ; 15(34): 40954-40962, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37584965

RESUMEN

Given the rapid developments in modern devices, there is an urgent need for shape-memory polymer composites (SMPCs) in soft robots and other fields. However, it remains a challenge to endow SMPCs with both a reconfigurable permanent shape and a locally reversible shape transformation. Herein, a dynamic cross-linked network was facilely constructed in carbon nanotube/ethylene vinyl acetate copolymer (CNT/EVA) composites by designing the molecular structure of EVA. The CNT/EVA composite with 0.05 wt % CNT realized a steady-state temperature of ∼75 °C under 0.11 W/cm2 light intensity, which gave rise to remote actuation behavior. The dynamic cross-linked network along with a wide melting temperature offered opportunities for chemical and physical programming, thus realizing the achievement of the programmable three-dimensional (3D) structure and locally reversible actuation. Specifically, the CNT/EVA composite exhibited a superior permanent shape reconfiguration by activating the dynamic cross-linked network at 140 °C. The composite also showed a high reversible deformation rate of 11.1%. These features endowed the composites with the capability of transformation to 3D structure as well as locally reversible actuation performance. This work provides an attractive guideline for the future design of SMPCs with sophisticated structures and actuation capability.

4.
J Colloid Interface Sci ; 649: 501-509, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37356151

RESUMEN

The impedance matching performance of carbon nanotubes (CNTs) can be effectively enhanced by developing a uniform magnetic impedance matching layer, which can take on critical significance in achieving the desirable microwave absorption (MA) performance. To obtain a uniform coating of Nickel (Ni) nanoparticles on CNTs, several methods have been developed (e.g., the γ-irradiation technique, electroless deposition, as well as microwave welding method). However, the intricate and complicated conditions of the above-mentioned methods limit their wide application. Therefore, controlling the distribution of Ni nanoparticles with the aid of a concise and effective method remains a great challenge. Herein, in view of the uniform dispersion effect of polyvinylpyrrolidone (PVP) on CNTs and its complexation with Ni ions, uniform coating of Ni nanoparticles on CNTs is well developed after it is introduced in the hydrothermal process. The prepared Ni/CNTs composites exhibited excellent MA performance in comparison with those of reported Ni/CNTs composites for the ideal impedance matching performance and microwave attenuation ability. When the filler content was only 15 wt%, the minimum reflection loss (RLmin) reached -39.5 dB, and the effective bandwidth (EB) with RL < -10 dB reached 5.2 GHz at the thickness of 1.15 mm. A scalable strategy of regulating the distribution of Ni nanoparticles and preparing a lightweight microwave absorber based on CNTs was developed in this study, which can serve as a vital guideline for preparing novel MA composite materials.

5.
ACS Appl Mater Interfaces ; 15(21): 25990-25999, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204088

RESUMEN

Polyimide (PI) foam with excellent microwave absorption (MA) performance and desirable compressive strength is highly critical and in demand in the structural MA components. Although the satisfactory MA performance of the present PI-based MA foams has been achieved by employing diverse methods, the relatively low compressive strength (∼KPa) restricted them from use as structural MA foams in practical application. Herein, isocyanate acid was introduced to the backbone of PI resin, which not only increased the PI backbone polarity and strength as rigid chain segment, but also served as a self-foaming component. The porous structure of PI foams was readily regulated by adjusting the water and carbon nanotube (CNT) filler contents of precursor dispersion. As a result of the improved polarity of the PI backbone resulted from the isocyanate group and high dielectric loss of CNT, the high compressive strength of 7.04 MPa and impressive MA property of the resultant PI foam with a low CNT loading ratio of 1.5 wt % were achieved, which were much higher than those reported previously. Especially, the effective absorption bandwidth (EAB) (RL < -10 dB) was up to 10.7 GHz (at the thickness of 3 mm), covering the C, X, and Ku bands simultaneously. Meanwhile, the EAB of the as-prepared PI foam retained 9.3 and 9.7 GHz even after being subjected to liquid nitrogen (-196 °C) and high temperature (300 °C) treatments due to the desirable stability of PI. In addition, the excellent thermal insulation resulted from the pores structure and low filler content was achieved, where the top surface only presented 60 °C after placing on 300 °C platform for 30 min. The high compressive strength, impressive MA property, and thermal insulation endowed the resultant CNT/PI foam with great potential application as structural MA foam in a harsh service environment.

7.
ACS Appl Mater Interfaces ; 13(36): 43449-43457, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34472846

RESUMEN

Composites based on a shape-memory polymer doped with conductive particles are considered as soft actuators for artificial muscles and robots. Low-voltage actuating is expected to reduce equipment requirement and safety hazards, which requires a highly conductive particle content but weakens the reversible deformation. The spatial distribution of the conductive particle is key to decreasing the actuating voltage and maintaining the reversible deformation. Herein, an approach of fabricating a low-voltage actuator that can perform various biomimetic locomotions by spraying and hot pressing is reported. Carbon nanotubes (CNTs) are enriched inside the surface layer of poly(ethylene-co-vinyl acetate) (EVA) to form a high-density conductive network without degradation of the reversible deformation. The bilayer CNT/EVA actuator exhibits a reversible transformation of more than 10% even with 100 cycles, which requires an applied voltage of just 15 V. Taking advantage of the reprogrammability of the CNT/EVA actuator and reversible shift between the different shapes, different biomimetic locomotions (sample actuator, gripper, and walking robot) are demonstrated without any additional mechanical components. A scheme combining the electrical properties and the shape-memory effect provides a versatile strategy to fabricate low-voltage-actuated polymeric actuators, providing inspiration in the development of electrical soft actuators and biomimetic devices.

8.
Nanomicro Lett ; 13(1): 162, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34338928

RESUMEN

HIGHLIGHTS: The cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time. The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties. Efficient healing property was realized under heating environment. It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels-Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.

9.
ACS Appl Mater Interfaces ; 12(47): 53230-53238, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33179903

RESUMEN

Conductive textiles (CTs) are promising electromagnetic interference (EMI) shielding materials. Nevertheless, limited stretchability and poor reliability restrict their potential applications in stretchable electronic devices because of the rigid conductive networks. Herein, a highly stretchable and reliable CT is developed for effective EMI shielding by designing a deformable liquid-metal (LM) coating and polydimethylsiloxane (PDMS) protective layer. The resultant PDMS-LM/Textile exhibits an outstanding EMI shielding efficiency (EMI SE) of 72.6 dB at a thickness of only 0.35 mm while maintaining EMI SEs of 66.0 and 52.4 dB under strains of 30 and 50%, respectively. The corresponding EMI SEs hold 91.7 and 80.3% retention after 5000 stretching-releasing cycles, respectively. The superior and durable EMI SE should be ascribed to the perfect connectivity and good deformability of conductive LM networks. Moreover, the LM coating has a robust fastness to the textile substrate, without any obvious decrease in EMI SE after 10 min of ultrasonic treatment and 100 peeling cycles because of the protective effect of the PDMS layer. This work provides a novel route to developing highly stretchable CTs for advanced EMI shielding applications, especially in the field of highly stretchable electronic devices.

10.
ACS Appl Mater Interfaces ; 12(17): 19988-19999, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32252521

RESUMEN

The pressure sensor with high sensitivity and a broad pressure sensing range is highly desired for flexible electronics. Here, a high-performance pressure sensor based on a hybrid structure was facilely fabricated using the glass template method, which consists of polyurethane (PU) mesodomes embedded with gradient-distributed silver nanowire (AgNW). Such a novel hybrid architecture enables the as-prepared PU/AgNW pressure sensor to have high sensitivity as well as a wide detection range. Moreover, the obtained PU/AgNW pressure sensors have a fast response time (20 ms), good cycling stability, and excellent flexibility. The pressure sensor, benefiting from its outstanding comprehensive sensing performance, can be used for expression recognition and human activity monitoring, showing tremendous application potential in wearable devices. The proposed architecture and developed methodology in this work is promising for future flexible electronic applications.

11.
ACS Appl Mater Interfaces ; 12(16): 18840-18849, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32223261

RESUMEN

Developing high-performance electromagnetic interference (EMI) shielding materials with high absorption coefficient is highly desired for eliminating the secondary pollution of reflected electromagnetic wave (EMW). Nevertheless, it has long been a daunting challenge to achieve high shielding effectiveness (SE) and ultralow or no reflection SE simultaneously. Herein, highly porous and conductive carbon nanotube (CNT)-based carbon aerogel with a meticulously designed hierarchically porous structure from micro and sub-micro to nano levels is developed by specific two-stage pyrolysis and potassium hydroxide activation processes. The resultant activated cellulose-derived carbon aerogels (a-CCAs) exhibit an ultrahigh EMI SE of 96.4 dB in the frequency range of 8.2-12.4 GHz in conjunction with an exceptionally high absorption coefficient of 0.79 at a low density of 30.5 mg cm-3. The successful construction of hierarchically porous structure is responsible for the excellent "structurally absorbing" ability of a-CCAs, and the introduction of CNT-based heterogeneous conductive network can effectively dissipate the incident EMWs by interfacial polarization and microcurrent losses. Moreover, the as-prepared a-CCAs have a water contact angle of as high as 158.3°and a sliding angle of as low as 5.3°, revealing their superhydrophobic feature. The ingenious structure design proposed here provides a possible pathway to overcome the conflict between high EMI shielding performance and ultralow or no secondary reflection, and the as-prepared a-CCAs are exceedingly promising in the application of telecommunication, microelectronics, and spacecraft.

12.
ACS Appl Mater Interfaces ; 12(7): 8704-8712, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31971778

RESUMEN

Excellent electromagnetic interference (EMI) shielding ability, light weight, and good heat resistance are highly required for practical applications of EMI shielding materials, such as in areas of aerospace, aircraft, and automobiles. Herein, a lightweight and robust carbon nanotube (CNT)/polyimide (PI) foam was developed for efficient and heat-resistant EMI shielding. Thanks to poly(vinyl pyrrolidone) (PVP) as a surfactant that not only promotes the uniform dispersion of CNTs to form perfect CNT conductive networks but also can be removed in situ during the polymerization process, the density of resultant CNT/PI foam is only 32.1 mg·cm-3, and the EMI shielding effectiveness (EMI SE) is up to 41.1 dB, which represents one of the highest EMI SE values compared to previously reported polymer-based foams. The CNT/PI foam also achieves the absorption coefficient (A) of up to 82.3%, which is very impressive in CNT/polymer foams at comparable EMI SE levels. The PI matrix endows the foam with excellent heat resistance. The as-prepared CNT/PI foam presents a higher EMI SE than 35 dB even after being subjected to the flame of an alcohol burner. Moreover, the compressive strength and compressive modulus are up to 240.9 and 323.9 kPa. These results indicate its certain application potential in the harsh requirement of aeronautics and aerospace industries as a highly efficient and lightweight EMI shielding material.

13.
ACS Appl Mater Interfaces ; 11(40): 37094-37102, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31512856

RESUMEN

Flexible strain sensors based on elastomeric conductive polymer composites (ECPCs) play an important role in wearable sensing electronics. However, the achievement of good conjunction between broad detection range and high sensitivity is still challenging. Herein, a highly stretchable and sensitive strain sensor was developed with the formation of porous segregated conductive network in the carbon nanotube/thermoplastic polyurethane composite via a facile and nontoxic compression-molding plus salt-leaching method. The strain sensor with porous segregated conductive network exhibited perfect combination of ultrawide sensing range (800% strain), large sensitivity (gauge factor of 356.4), short response time (180 ms) and recovery time (180 ms), as well as superior stability and durability. The integrated porous structure intensifies the deformation of segregated conductive network when tension strain is applied, which benefits enhancement of the sensitivity. Our sensor could monitor not only subtle oscillation and physiological signals but also energetic human motions efficiently, revealing promising potential applications in wearable motion monitoring systems. This work provides a unique and effective strategy for realizing ECPCs based strain sensors with excellent comprehensive sensing performances.

14.
Polymers (Basel) ; 11(9)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547358

RESUMEN

An efficient electromagnetic interference (EMI) shielding paper with excellent water repellency and mechanical flexibility has been developed, by assembling silver nanowires (AgNWs) and hydrophobic inorganic ceramic on the cellulose paper, via a facile dip-coating preparation. Scanning electron microscope (SEM) observations confirmed that AgNWs were interconnected and densely coated on both sides of the cellulose fiber, which endows the as-prepared paper with high conductivity (33.69 S/cm in-plane direction) at a low AgNW area density of 0.13 mg/cm2. Owing to multiple reflections and scattering between the two outer highly conductive surfaces, the obtained composite presented a high EMI shielding effectiveness (EMI SE) of up to 46 dB against the X band, and ultrahigh specific EMI SE of 271.2 dB mm-1. Moreover, the prepared hydrophobic AgNW/cellulose (H-AgNW/cellulose) composite paper could also maintain high EMI SE and extraordinary waterproofness (water contact angle > 140°) by suffering dozens of bending tests or one thousand peeling tests. Overall, such a multifunctional paper might have practical applications in packaging conductive components and can be used as EMI shielding elements in advanced application areas, even under harsh conditions.

15.
ACS Appl Mater Interfaces ; 11(26): 23649-23658, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31252483

RESUMEN

Flexible strain sensors have attracted a great amount of attention for promising applications in next-generation artificially intelligent devices. However, it is difficult for conventional planar strain sensors to meet the requirements of miniature size and light weight for flexible electronics. Herein, a highly sensitive and stretchable fiber strain sensor with a millimeter diameter was innovatively fabricated by the capillary tube method to integrate silver nanowires (AgNWs) in polyurethane (PU) fibers. Scanning electron microscopy results demonstrate that AgNWs were embedded into the surface layer of PU fibers and formed completely conductive networks. The unique AgNW networks endow the PU/AgNW fibers with superior electrical conductivity of 3.1 S/cm, high elongation at break of 265%, wide response range of 43%, high gauge factor of 87.6 up to 22% strain, fast response time of 49 ms, and excellent reliability and stability. Such satisfactory stretchability and sensitivity is attributed to the combination of the highly stretchable PU matrix and the embedded architecture of the AgNW conductive network. Moreover, PU/AgNW fibers can be employed as wearable devices to detect various human motions and to drive light-emitting diodes at a lower voltage (2.7 V).

16.
ACS Appl Mater Interfaces ; 11(12): 12008-12016, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30816693

RESUMEN

Conventional polymers are usually processed at a much higher temperature than room temperature, which inevitably leads to huge energy consumption and degradation of the polymers and thus a low recycling ability. Herein, we synthesized a poly( n-butyl acrylate)@polystyrene (PBA@PS) core-shell polymer to prepare a typical baroplastic (processible at room temperature). However, this type of baroplastics always has a low mechanical property. To solve this problem, in this work, we introduced hydrogen bonds into the matrix and successfully reinforced baroplastics for the first time. The hydrogen-bonded interaction was introduced by complexing PBA@PS with poly(acrylic acid) and poly(ethylene oxide). The results show that the reinforced baroplastics possessed notably enhanced mechanical properties and good processability. Their mechanical strength and modulus reached as high as 5.6 (by 73%) and 10 MPa (by 400%), respectively. Moreover, the baroplastics could be remolded many times at room temperature and, at the same time, still showed a higher tensile strength (10.5 MPa, 3.3 times that of the initial PBA@PS, which was never achieved in previous works), which resulted from the reversible hydrogen bonds and reserved orientation of molecular chains. Our work opened a new path to reinforce baroplastics and could widen their applications. Furthermore, not limited to the hydrogen bonds, more sacrificial bonds, such as ionic bonds, host-guest interactions, and metal-ligand coordination bonds, could be used to fabricate high-performance baroplastics.

18.
ACS Appl Mater Interfaces ; 11(1): 1680-1688, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30520621

RESUMEN

Superhydrophobic electromagnetic interference (EMI) shielding textile (EMIST) is of great significance to the safety and long-term service of all-weather outdoor equipment. However, it is still challenging to achieve long-term durability and stability under external mechanical deformations or other harsh service conditions. Herein, by designing and implementing silver nanowire (AgNW) networks and a superhydrophobic coating onto a commercial textile, we demonstrate a highly robust superhydrophobic EMIST. The resultant EMIST shows a synergy of high water contact angle (160.8°), low sliding angle (2.9°), and superior EMI shielding effectiveness (51.5 dB). Remarkably, the EMIST still maintains its superhydrophobic feature and high EMI shielding level (42.6 dB) even after 5000 stretching-releasing cycles. Moreover, the EMIST exhibits strong resistance to ultrasonic treatment up to 60 min, peeling test up to 100 cycles, strong acidic/alkaline solutions, and different organic solvents, indicating its outstanding mechanical robustness and chemical durability. These attractive features of the EMIST are mainly a result of the joint action of AgNWs, carbon nanotubes, polytetrafluoroethylene nanoparticles, and fluoroacrylic polymer. This work offers a promising approach for the design of future durable, superhydrophobic EMISTs, which are capable of remaining fully functional against long-time exposure to extreme conditions, for example, wet and corrosive environments.

19.
ACS Appl Mater Interfaces ; 10(46): 40156-40167, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30383958

RESUMEN

Lightweight conductive polymer composites based on biomass could be a promising candidate for electromagnetic interference (EMI) shielding application. Herein, tailoring porous microstructure and regulating the distribution of carbon nanotubes (CNTs) in cellulose composites are attempts to achieve highly efficient EMI shielding properties accompanying desired mechanical property and low density. Specifically, aligned porous structure is fabricated by ice-template freeze-drying method; meanwhile, CNT is regulated to decorate inside the cellulose matrix (CNT-matrix/cellulose porous composites) or to directly bind over the cellulose cell walls (CNT-interface/cellulose porous composites). It is found that, owing to the preferential distribution of CNT on the cell walls, the CNT-interface/cellulose porous composites possess a very high electrical conductivity of 38.9 S m-1 with an extremely low percolation threshold of 0.0083 vol % with regard to CNT-matrix/cellulose porous composites. Therefore, a shielding effectiveness of 40 dB with merely 0.51 vol % CNT under a thickness of 2.5 mm is achieved in CNT-interface/cellulose porous composites, which is attributed to efficient multiple reflections and the accompanying absorption with promoted conductivity and better-defined porous structure. More laudably, the CNT-interface/cellulose porous composites reveal a superior mechanical property with a specific modulus of 279 MPa g-1 cm3. The value behind the current work is to pave an effective way to fabricate environmentally benign, high-performance EMI shielding materials to practically boost numerous advanced applications of cellulose.

20.
ACS Appl Mater Interfaces ; 10(48): 41637-41644, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30395431

RESUMEN

Personal cooling technologies (PCTs) locally control the temperature of an individual instead of a whole building and are thus energy saving. However, most PCTs still consume energy and are heavy in weight, restricting their application among human beings. To achieve personal thermal comfort and no energy consumption on hot summer days, we designed a bilayer structure fabric with high thermal comfort by increasing the dissipation of human thermal radiation and reducing solar energy absorption simultaneously. The fabric consisted of two layers, including a polyethylene film with nanopores (100-1000 nm in pore size) and a film made of nylon 6 nanofibers (ca. 100 nm in diameter) with beads (ca. 230 nm in diameter), which could increase the visible light reflectance but not affect the infrared wave radiation. Therefore, the designed fabric showed a high heat dissipation power, which was 14.13, 17.93, and 17.93 W/m2 higher than that of the selected traditional textiles of cotton, linen, and odile, respectively, suggesting good cooling capability. Its cooling performance was better than those reported by the previous research works even at a higher ambient temperature. Meanwhile, the moisture penetrability and hygroscopic property results indicated that the wearing comfort of the designed fabric reached the levels of the selected traditional textiles.


Asunto(s)
Temperatura Corporal , Rayos Infrarrojos , Nylons , Polietileno , Textiles , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA