Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Chinese Journal of Burns ; (6): 184-189, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-971168

RESUMEN

Diabetic wounds are a common complication of diabetic patients, and the incidence has been increasing in recent years. In addition, its poor clinical prognosis seriously affects the quality of life of patients, which has become the focus and difficulty of diabetes treatment. As the RNA regulating gene expression, non-coding RNA can regulate the pathophysiological process of diseases, and play an important role in the healing process of diabetic wounds. In this paper, we reviewed the regulatory role, diagnostic value, and therapeutic potential of three common non-coding RNA in diabetic wounds, in order to provide a new solution for the diagnosis and treatment of diabetic wounds at the genetic and molecular level.


Asunto(s)
Humanos , Calidad de Vida , Diabetes Mellitus/genética , Cicatrización de Heridas , ARN no Traducido/genética
2.
J Ethnopharmacol ; 298: 115576, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963421

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wenxin Formula (WXF) is a well-known prescription with a significant curative effect in the treatment of cardiac disease. However, the lack of quality control standards caused by unclear quality control components limits the development of new drugs. AIM OF THE STUDY: The aims of this research were to discover the effective materials and screen the quality markers of WXF through a chinmedomics strategy to aid in efficacy evaluation. MATERIAL AND METHODS: The therapeutic effect of WXF against myocardial ischaemia (MI) was evaluated by serum metabolic profiling combined with routine electrocardiography; analyses of the serum biochemical indices CK, CK-MB and α-HBDH; and histopathological tests involving TTC staining and HE staining. The raw data of serum samples were obtained by UPLC-HDMS, and multivariate statistical analysis was performed with Progenesis QI software. PCMS software was used to sift the quality markers of WXF. RESULTS: A total of 25 metabolites were characterized as biomarkers for myocardial ischaemia, and Wenxin Formula reversed the levels of 23 of them that were involved in arachidonic acid metabolism, glycerophospholipid metabolism, lysine degradation, and tyrosine metabolism. Eight constituents absorbed into blood were considered to form the effective material basis of Wenxin Formula for treating myocardial ischaemia, and the Q-markers selected through PCMS were ginsenoside Rb1, cinnamic acid, paeoniflorin and berberine. CONCLUSIONS: WXF significantly ameliorated the clinical symptoms, pathological changes and metabolic abnormalities of myocardial ischaemia. This study shows that chinmedomics is a powerful strategy to filter Q-markers from effective constituents to rationally evaluate the efficacy and safety of TCMs.


Asunto(s)
Medicamentos Herbarios Chinos , Isquemia Miocárdica , Biomarcadores , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Metabolómica , Isquemia Miocárdica/tratamiento farmacológico , Control de Calidad
3.
Molecules ; 27(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630576

RESUMEN

Ischemic stroke (IS) is a common neurological disorder associated with high disability rates and mortality rates. At present, recombinant tissue plasminogen activator (r-tPA) is the only US(FDA)-approved drug for IS. However, due to the narrow therapeutic window and risk of intracerebral hemorrhage, r-tPA is currently used in less than 5% of stroke patients. Natural compounds have been widely used in the treatment of IS in China and have a wide range of therapeutic effects on IS by regulating multiple targets and signaling pathways. The keywords "ischemia stroke, traditional Chinese Medicine, Chinese herbal medicine, natural compounds" were used to search the relevant literature in PubMed and other databases over the past five years. The results showed that JAK/STAT, NF-κB, MAPK, Notch, Nrf2, and PI3K/Akt are the key pathways, and SIRT1, MMP9, TLR4, HIF-α are the key targets for the natural compounds from traditional Chinese medicine in treating IS. This study aims to update and summarize the signaling pathways and targets of natural compounds in the treatment of IS, and provide a base of information for the future development of effective treatments for IS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Medicina Tradicional China , Transducción de Señal , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Activador de Tejido Plasminógeno/metabolismo
4.
Front Pharmacol ; 13: 857361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450037

RESUMEN

Background: Damp-heat jaundice syndrome (DHJS) is a diagnostic model of traditional Chinese medicine (TCM) that refers to jaundice caused by damp-heat pathogen invasion. DHJS is the most common clinical manifestation of TCM, with yellow skin, yellow eyes and anorexia. ZhiziBaipi Decoction (ZBD) is a classic TCM formula that is effective at treating DHJS and various liver diseases. However, the effective components of ZBD in the context of DHJS and the underlying mechanism are unclear. Purpose: This study of ZBD using the DHJS rat model aimed to elucidate the pathobiology of DHJS and the metabolic targets of therapeutic ZBD, construct the network relationship between the components of ZBD and endogenous biomarkers, and clarify the underlying mechanism of ZBD in preventing and treating DHJS. Methods: Using chinmedomics as the core strategy, an animal model was generated, and the therapeutic effect of ZBD was evaluated based on behavioral, histopathological and biochemical indicators. Metabonomics tools were used to identify biomarkers of DHJS, TCM-based serum pharmacochemistry was used to analyze the effective constituents of ZBD, and chinmedomics technology was used to identify ZBD components highly related to DHJS biomarkers. Results: A total of 42 biomarkers were preliminarily identified, and ZBD significantly affected the levels of 29 of these biomarkers. A total of 59 compounds in ZBD were characterized in vivo. According to chinmedomics analysis, the highly correlated components found in blood were isoformononetin, 3-O-feruloylquinic acid, glycyrrhizic acid, oxyberberine, obaculactone and five metabolites. Conclusions: Chinmedomics combined with UPLC-MS/MS was used to study the targets and effective constituents of ZBD for the treatment of DHJS.

5.
Front Endocrinol (Lausanne) ; 13: 858012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399942

RESUMEN

Diabetic retinopathy is one of the serious complications of diabetes, which the leading causes of blindness worldwide, and its irreversibility renders the existing treatment methods unsatisfactory. Early detection and timely intervention can effectively reduce the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology and a powerful tool for studying pathophysiological processes, which can help identify the characteristic metabolic changes marking the progression of diabetic retinopathy, discover potential biomarkers to inform clinical diagnosis and treatment. This review provides an update on the known metabolomics biomarkers of diabetic retinopathy. Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a precursor, has attracted our attention due to its important correlation with diabetic retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a therapeutic strategy for diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Arginina , Biomarcadores/metabolismo , Creatina/metabolismo , Retinopatía Diabética/metabolismo , Humanos , Redes y Vías Metabólicas , Metabolómica/métodos
6.
Chinese Journal of Burns ; (6): 21-28, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-935976

RESUMEN

Objective: To explore the value of cerebral hypoxic-ischemic injury markers in the early diagnosis of sepsis associated encephalopathy (SAE) in burn patients with sepsis. Methods: A retrospective case series study was conducted. From October 2018 to May 2021, 41 burn patients with sepsis who were admitted to Zhengzhou First People's Hospital met the inclusion criteria, including 23 males and 18 females, aged 18-65 (35±3) years. According to whether SAE occurred during hospitalization, the patients were divided into SAE group (21 cases) and non-SAE group (20 cases). The gender, age, deep partial-thickness burn area, full-thickness burn area, and acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) scores of patients were compared between the two groups. The serum levels of central nervous system specific protein S100β and neuron specific enolase (NSE) at 12, 24, and 48 h after sepsis diagnosis (hereinafter referred to as after diagnosis), the serum levels of interleukin-6 (IL-6), IL-10, tumor necrosis factor α (TNF-α), Tau protein, adrenocorticotropic hormone (ACTH), and cortisol at 12, 24, 48, 72, 120, and 168 h after diagnosis, and the mean blood flow velocity of middle cerebral artery (VmMCA), pulsatility index, and cerebral blood flow index (CBFi) on 1, 3, and 7 d after diagnosis of patients in the two groups were counted. Data were statistically analyzed with chi-square test, analysis of variance for repeated measurement, independent sample t test, and Bonferroni correction. The independent variables to predict the occurrence of SAE was screened by multi-factor logistic regression analysis. The receiver operating characteristic (ROC) curve was drawn for predicting the occurrence of SAE in burn patients with sepsis, and the area under the curve (AUC), the best threshold, and the sensitivity and specificity under the best threshold were calculated. Results: The gender, age, deep partial-thickness burn area, full-thickness burn area, and APACHE Ⅱ score of patients in the two groups were all similar (χ2=0.02, with t values of 0.71, 1.59, 0.91, and 1.07, respectively, P>0.05). At 12, 24, and 48 h after diagnosis, the serum levels of S100β and NSE of patients in SAE group were all significantly higher than those in non-SAE group (with t values of 37.74, 77.84, 44.16, 22.51, 38.76, and 29.31, respectively, P<0.01). At 12, 24, 48, 72, 120, and 168 h after diagnosis, the serum levels of IL-10, Tau protein, and ACTH of patients in SAE group were all significantly higher than those in non-SAE group (with t values of 10.68, 13.50, 10.59, 8.09, 7.17, 4.71, 5.51, 3.20, 3.61, 3.58, 3.28, 4.21, 5.91, 5.66, 4.98, 4.69, 4.78, and 2.97, respectively, P<0.01). At 12, 24, 48, 72, and 120 h after diagnosis, the serum levels of IL-6 and TNF-α of patients in SAE group were all significantly higher than those in non-SAE group (with t values of 8.56, 7.32, 2.08, 2.53, 3.37, 4.44, 5.36, 5.35, 6.85, and 5.15, respectively, P<0.05 or P<0.01). At 12, 24, and 48 h after diagnosis, the serum level of cortisol of patients in SAE group was significantly higher than that in non-SAE group (with t values of 5.44, 5.46, and 3.55, respectively, P<0.01). On 1 d after diagnosis, the VmMCA and CBFi of patients in SAE group were significantly lower than those in non-SAE group (with t values of 2.94 and 2.67, respectively, P<0.05). On 1, 3, and 7 d after diagnosis, the pulsatile index of patients in SAE group was significantly higher than that in non-SAE group (with t values of 2.56, 3.20, and 3.12, respectively, P<0.05 or P<0.01). Serum IL-6 at 12 h after diagnosis, serum Tau protein at 24 h after diagnosis, serum ACTH at 24 h after diagnosis, and serum cortisol at 24 h after diagnosis were the independent risk factors for SAE complicated in burn patients with sepsis (with odds ratios of 2.42, 1.38, 4.29, and 4.19, 95% confidence interval of 1.76-3.82, 1.06-2.45, 1.37-6.68, and 3.32-8.79, respectively, P<0.01). For 41 burn patients with sepsis, the AUC of ROC of serum IL-6 at 12 h after diagnosis for predicting SAE was 0.92 (95% confidence interval was 0.84-1.00), the best threshold was 157 pg/mL, the sensitivity was 81%, and the specificity was 89%. The AUC of ROC of serum Tau protein at 24 h after diagnosis for predicting SAE was 0.92 (95% confidence interval was 0.82-1.00), the best threshold was 6.4 pg/mL, the sensitivity was 97%, and the specificity was 99%. The AUC of ROC of serum ACTH at 24 h after diagnosis for predicting SAE was 0.96 (95% confidence interval was 0.89-1.00), the best threshold was 14.7 pg/mL, the sensitivity was 90%, and the specificity was 94%. The AUC of ROC of serum cortisol at 24 h after diagnosis for predicting SAE was 0.93 (95% confidence interval was 0.86-1.00), the best threshold was 89 nmol/L, the sensitivity was 94%, and the specificity was 97%. Conclusions: Serum Tau protein, ACTH, and cortisol have high clinical diagnostic value for SAE complicated in burn patients with sepsis.


Asunto(s)
Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Quemaduras/complicaciones , Diagnóstico Precoz , Pronóstico , Curva ROC , Estudios Retrospectivos , Sepsis/diagnóstico , Encefalopatía Asociada a la Sepsis
7.
Phytomedicine ; 67: 153165, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31954259

RESUMEN

BACKGROUND: Quality control of traditional Chinese medicine (TCM) is the basis of clinical efficacy. Due to the complexity of TCM, it is difficult to unify the quality control, and hinders the further implementation of the quality standardization of TCM. As a new concept, quality-marker (Q-marker) plays a powerful role in promoting the standardization of quality control system of TCM. HYPOTHESIS/PURPOSE: The present review aims to provide reference and scientific basis for further development of Q-marker and assist standardization of quality control of TCM. METHODS: Extensive search of various documents and electronic databases such as Pubmed, Royal Society of Chemistry, Science Direct, Springer, Web of Science, and Wiley, etc., were used to search scientific contributions. Other online academic libraries, e.g. Google Scholars, Scopus and national pharmacology literature were also been employed to learn more relevant information about Q-marker. RESULTS: Q-markers play vital role in promoting the standardization of quality control of TCM. The factors that affect the quality of TCM, the advantages and disadvantages of the analytical techniques commonly used in Q-marker research were reviewed, as well as the systematic research strategies, which were verified by practices. CONCLUSION: The proposal of Q-marker not only provided a new perspective to break through the bottleneck of current quality control, but also can be used in the evaluation of pharmacological efficiency, therapeutic discovery, toxicology, etc. In addition, the Q-marker analysis strategies summarized in this paper is helpful to standardize the quality control of TCM and promote the internationalization of TCM.


Asunto(s)
Biomarcadores/análisis , Técnicas de Química Analítica/métodos , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química , Medicina Tradicional China/normas , Control de Calidad , Reproducibilidad de los Resultados
8.
RSC Adv ; 10(5): 2677-2690, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35496090

RESUMEN

Metabolomics has been used as a promising strategy to evaluate the efficacy of and potential targets for natural products. Alcoholic liver disease (ALD) as a result of chronic ethanol consumption has high morbidity and mortality. Geniposide possesses a hepatoprotective activity against ALD, but its mechanism of action is still not clear. In this study, serum metabolomics based on ultra-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry (UPLC-Q/TOF-MS) combined with ingenuity pathway analysis was used to explore the therapeutic mechanisms of geniposide. We found that the levels of AST, ALT, MDA, TG, and γ-GT in the geniposide-treated group were significantly decreased, and the level of GSH was significantly increased, compared with the model group. Meanwhile, geniposide effectively inhibits apoptosis and caspase-3 activity in liver tissue. A total of 33 metabolites were identified and related with the model group to illuminate the pathogenesis of ALD, 21 of which are regulated by geniposide, involving the relevant metabolic pathways, such as amino acid metabolism, arachidonic acid metabolism, pyruvate metabolism, TCA cycle, etc. Furthermore, a significant change in amino acid metabolism suggested that it might be a promising mechanism-related target for geniposide against ALD. It also showed that a metabolomic strategy using UPLC-Q/TOF-MS combined with ingenuity pathway analysis is a potentially powerful tool for providing a comprehensive understanding of the therapeutic mechanisms of natural products, but it also offers a theoretical basis for the prevention or treatment of disease.

9.
Phytomedicine ; 74: 152928, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31451286

RESUMEN

BACKGROUND: Quality control of traditional Chinese medicine (TCM) has always been a hot issue to TCM. However, due to the complexity of TCM ingredients, the current quality standards of TCM have problems that are difficult to guarantee clinical efficacy. American ginseng, the dried roots of Pawajc quinquefolium L. (Araliaceae), is a valuable herbal medicine due to various pharmacological effects and huge health benefit, which are associated with numerous active ingredients such as ginsenosides. Although a large number of studies have investigated the active ingredients of American ginseng, Q-markers reflecting comprehensive review on its efficacies has yet been unrevealed. PURPOSE: The study aims to discover the Q-markers of Panax quinquefolius (American ginseng), provides a powerful method to clarify the significant ingredents of TCM and help further discovering extensive quality evaluation model,contributing to a significant improvement of TCM quality standard. METHODS: Mice general status, biochemical indexes assay, urine metabolic profile, and serum metabolic profile were utilized for model replication and efficacy evaluation. The in vitro and in vivo constituents of American ginseng using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC-MS) with Serum Pharmacochemistry of TCM were in-depth investigated. Q-markers that were associated with core markers of therapeutic effects were excavated by a plotting of correlation between marker metabolites and serum constituents (PCMS) approach. RESULTS: Correlation analysis of 41 blood and urine labeled metabolites with 14 serum components showed that 24-methyl-7-cholesten-3ß-ol, zizybeoside II, betulin, ginsenoside Rd, cinnamyl alcohol, pseudoginsenoside F11 is highly correlated with the therapeutic effects of Compound Zaofan Pill (CZP), while pseudoginsenoside F11 and ginsenoside Rd are highly correlated with the therapeutic effects of American ginseng. The six absorbed blood compounds can be considered as potential Q-markers for compound, of which two compounds, such as pseudoginsenoside F11 and ginsenoside Rd, can be considered as potential Q-markers for American ginseng. CONCLUSION: The study has demonstrated that the Chinmedomics is an effective, comprehensive and fire-new method for discovering the Q-markers of TCM, and it may be more reasonable choices to establish quality standards of TCM.


Asunto(s)
Biomarcadores Farmacológicos/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Panax/química , Animales , Biomarcadores Farmacológicos/sangre , Biomarcadores Farmacológicos/orina , Sangre/efectos de los fármacos , Sangre/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Ginsenósidos/análisis , Espectrometría de Masas , Medicina Tradicional China/normas , Ratones , Raíces de Plantas/química , Plantas Medicinales/química , Control de Calidad , Urinálisis
10.
Biomed Chromatogr ; 34(2): e4724, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31755117

RESUMEN

Lipid metabolism has a significant function in the central nervous system and Alzheimer's disease (AD) is an age-related senile disease characterized by central nerve degeneration. The pathological development of AD is closely related to lipid metabolism disorders. To reveal the influence of Kai-Xin-San (KXS) on lipid metabolism in APP/PSI transgenic mice and potential therapeutic targets for treating AD, brain tissue samples were collected and analyzed by high-throughput lipidomics based on UPLC-Q/TOF-MS. The collected raw data were processed by multivariate data analysis to discover the potential biomarkers and lipid metabolic profiles. Compared with the control wild-type mouse group, nine potential lipid biomarkers were found in the AD model group, of which seven were up-regulated and two were down-regulated. Orally administrated KXS can reverse the changes in these potential biomarkers. Compared with the model group, a total of six differential metabolites showed a recovery trend and may be potential targets for KXS to treat AD. This study showed that high-throughput lipidomics can be used to discover the perturbed pathways and lipid biomarkers as potential targets to reveal the therapeutic effects of KXS.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Lipidómica/métodos , Lípidos/análisis , Animales , Biomarcadores/análisis , Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
J Proteomics ; 206: 103447, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31326558

RESUMEN

Functional metabolomics could bring correlative information about specific cell types under different conditions for exploring cell properties and functions. In this study, we adopt a non-targeted cell metabolomics strategy to reveal the proliferation inhibition mechanism of obacunone on 22RV1 prostate cancer cells. Using high-throughput liquid chromatography-high definition mass spectrometry combined with pattern recognition methods was performed to analyze the cell metabolic profiles and pathway of obacunone on prostate cancer. A total of twenty one proposed metabolites in prostate cancer cell and nine vital metabolic pathways such as nicotinate and nicotinamide metabolism, phenylalanine metabolism as well as tryptophan metabolism were identified from large amounts of data. Then, we have built an overall metabolic description network of obacunone to defense prostate cancer. In addition, morphological observation, cell proliferation and apoptosis analysis of 22RV1 human prostate cancer cells were performed to better understand physiopathologic changes after obacunone treatment. Functional metabolomics is a valuable tool that insight into the natural product mechanisms and contributes to new drug discovery. SIGNIFICANCE: In this study, we probe into the proliferation inhibition effect of obacunone on 22RV1 prostate cancer cells by differentiating metabolic changes of cell sample in control and obacunone administration. Using the non-targeted and targeted cell metabolomics approaches, our findings were manifested that obacunone effectually control proliferation and promote apoptosis in 22RV1 prostate cancer cells, which were related to twenty one proposed metabolites, and nicotinate and nicotinamide metabolism, phenylalanine metabolism, tryptophan metabolism as well as ascorbate metabolism. These data were suggested that functional metabolomics analysis have potential to explore the pharmacodynamic mechanism through resolving metabolic changes in cancer cells that possesses higher clinical application value. The advances in the molecular understanding of the roles of metabolomic pathway concerned with particular metabolites in obacunone administration attract more attention in favor of burgeoning therapeutic measures resisting prostate cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Benzoxepinas/farmacología , Limoninas/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Metabolómica/métodos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
12.
Mass Spectrom Rev ; 38(4-5): 380-402, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30817039

RESUMEN

Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.


Asunto(s)
Productos Biológicos/farmacología , Descubrimiento de Drogas/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Extractos Vegetales/farmacología , Plantas Medicinales/metabolismo , Animales , Productos Biológicos/química , Productos Biológicos/metabolismo , Desarrollo de Medicamentos/métodos , Medicina de Hierbas/métodos , Humanos , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Plantas Medicinales/química
13.
RSC Adv ; 9(6): 3072-3080, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35518968

RESUMEN

Colorectal cancer (CRC) is one of the most malignant cancers resulting from abnormal metabolism alterations. As one of the essential amino acids, tryptophan has a variety of physiological functions, closely related to regulation of immune system, central nervous system, gastrointestinal nervous system and intestinal microflora. Colorectal cancer, a type of high-grade malignancy disease, stems from a variety of factors and often accompanies inflammatory reactions, dysbacteriosis, and metabolic disorders. Colorectal cancer accompanies inflammation and imbalance of intestinal microbiota and affects tryptophan metabolism. It is known that metabolites, rate-limiting enzymes, and ARH in tryptophan metabolism are associated with the development of CRC. Specifically, IDO1 may be a potential therapeutic target in colorectal cancer treatment. Furthermore, the reduction of tryptophan amount is proportional to the poor quality of life for colorectal cancer patients. This paper aims to discuss the role of tryptophan metabolism in a normal organism and investigate the relationship between this amino acid and colorectal cancer. This study is expected to provide theoretical support for research related to targeted therapy for colorectal cancer. Furthermore, strategies that modify tryptophan metabolism, effectively inhibiting tumor progression, may be more effective for CRC treatment.

14.
RSC Adv ; 9(20): 11420-11432, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35520218

RESUMEN

Coronary heart disease (CHD) is a relatively complex disease characterized by narrowing of the arterial lumen and reduction of blood flow to the heart. There is no effective early diagnosis and prevention method. Jing Zhi Guan Xin Pian (JZGXP) is a new preparation prepared from the effective extract of Guanxin II. It is made of five components of traditional Chinese medicine and functions by promoting blood circulation and removing blood stasis and is used for the treatment of CHD and angina pectoris. In our study, a CHD rat model was prepared using a high-fat diet combined with intraperitoneal injection of vitamin D3. Clinical biochemical indexes (TG, CHO and HDL-C), histopathology (coronary and myocardial tissue), electrocardiogram and cardiac indexes were used to evaluate the efficacy of JZGXP in the treatment of CHD model rats. UPLC-HDMS-based metabolomics techniques were used to find metabolic profiles, biomarkers and related metabolic pathways in CHD models and to evaluate the effects of JZGXP on them. At the same time, the targets of JZGXP for the treatment of CHD were analyzed. Our study ultimately identified 25 biomarkers associated with CHD models. Further studies found that these 25 biomarkers involved 9 metabolic pathways in the body and found that JZGXP can recall 21 biomarkers in the urine of model rats and these biomarkers involve nine metabolic pathways. Finally, the targets of JZGXP for the treatment of CHD were ß-alanine metabolism and tyrosine metabolism, i.e. amino acids metabolism. This study showed that metabolomics technology is effective for exploring potential biomarkers associated with syndromes or diseases and the therapeutic mechanisms of a traditional Chinese medicine formulation.

15.
RSC Adv ; 9(55): 32141-32153, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-35530762

RESUMEN

Essential hypertension (EH) is a chronic disease characterized by a variety of causes of elevated systemic arterial pressure, which often causes functional or organic damage to important organs such as the heart, brain, and kidney. Hypertension of excessive liver-fire syndrome is a type of classification for young people with essential hypertension. The disease is slower in its onset and its symptoms are more ambiguous, and thus its pathogenesis is complicated and still unclear. In this study, aconite, dried ginger and cinnamon extracts were combined with l-NAME to establish a model of excessive liver-fire hypertension. Blood pressure (systolic blood pressure), ANGII, NE and 5-HT were used as evaluation indicators to establish the model. Urinary metabolomics based on ultra-high performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry was used to characterize the metabolic changes and potential biomarkers in modeled rats. Compared to the treatment group, 32 potential biomarkers were initially identified in the model using multivariate statistical analysis involving 11 metabolic pathways. After oral administration of Luozhen capsules, eight biomarkers that can be adjusted in high, medium and low doses of Luozhen capsules in urine were preliminarily determined, mainly involving two metabolic pathways of amino acid metabolism and lipid metabolism. In conclusion, this study explored the metabolomic changes in rats with hypertension of liver-fire hyperactivity syndrome and the post-dose metabolomics, determined the relevant biomarker groups, and clarified the metabonomic connotation of Luozhen capsules in the treatment of liver-fire excessive type hypertension.

16.
RSC Adv ; 9(64): 37245-37257, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-35542267

RESUMEN

Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed. Mass spectrometry-based metabolomics has been used in a variety of disease research areas. However, the deep research of metabolites remains a difficult and lengthy process. Fortunately, mass spectrometry is considered to be a universal tool with high specificity and sensitivity and is widely used around the world. Mass spectrometry technology has been applied to various basic disciplines, providing technical support for the discovery and identification of endogenous substances in living organisms. The combination of metabolomics and mass spectrometry is of great significance for the discovery and identification of metabolite biomarkers. The mass spectrometry tool could further improve and develop the exploratory research of the life sciences. This mini review discusses metabolomics biotechnology with a focus on recent applications of metabolomics as a powerful tool to elucidate metabolic disturbances and the related mechanisms of diseases.

17.
RSC Adv ; 9(45): 26381-26392, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35685403

RESUMEN

In this review, we systematically discuss the role of traditional Chinese medicine (TCM) in rheumatoid arthritis (RA) disease treatment. TCM classifies the subtypes of RA through its own theoretical method, which is beneficial for more accurate diagnosis and treatment with Chinese herbal medicines (CHMs) that are more suitable for different syndromes. TCM mainly uses a flexible combination of CHMs to play an important role in RA treatment. The main components of these extracts can be subdivided into alkaloids, flavonoids, triterpenes, saponins and other compounds. Using a platform of transgenic and induced arthritis models, we explore the potential mechanisms of TCM against RA with the help of omics analysis techniques and methods. These mechanisms are mainly CHM and its extracts can inhibit RA patients and experimental animal models, including synovitis, vascular proliferation and bone injury; this involves many biological signal exchange targets and pathways. In conclusion, the role of TCM in RA treatment mainly involves reducing the expression and secretion of pro-inflammatory factors, thus decreasing the degree of abnormal immune response.

18.
Artículo en Inglés | MEDLINE | ID: mdl-29933222

RESUMEN

Alzheimer's disease (AD) is still a major problem nowadays. Under the circumstance of many chemical drugs have poor effects on AD, traditional Chinese medicine has become a hot spot for us due to its multi-target and multi-path advantages. To explore the potential therapeutic targets of Kaixinsan (KXS) protects against AD in APP/PS1 transgenic mice model. All mice were divided into three groups: control group, model group and KXS group. Orally given KXS from two month old, and the control and model groups were given the same dose of distilled water. We collected all mice's serum samples at the 12th month age to determine the lipid markers of AD by compare with the model and control groups in full-scan analysis based on high-throughput serum lipidomics technology. Then we found the lipid molecules called back by KXS from the KXS protects against AD. Compared with the control group, the metabolic profile of the model mice was obviously disordered, and we identified 16 lipid-related biomarkers associated with AD. After KXS treatment, the metabolic profiles of these disorders tended to recover compared with the model group. And we identified eight key lipid molecules, of which four had statistical significance. We found that the main perturbation pathways related to AD were linoleic acid metabolism, arachidonic acid metabolism and sphingolipid metabolism. All these metabolic pathways showed different degrees of rotation after KXS administration. Through the pathways analysis, we found 4 lipids molecules with significant differences, which could be used as new targets for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Medicamentos Herbarios Chinos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metaboloma/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento/métodos , Lípidos/análisis , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Ratones Transgénicos
19.
RSC Adv ; 8(2): 812-824, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35538992

RESUMEN

Natural products are the most representative form of conventional therapy as compared to any other traditional or alternative medicine systems. They have numerous active components, either primary or secondary metabolites, which are associated with the diverse, intricate, and distinct characteristics of natural products and result in various pharmacological effects in clinic. However, some problems are associated with research on herb quality, which is the core of the drug industry, and restrict the development of this field to a certain extent. Quality-markers (Q-markers), a novel concept for quality assessment, open up a new avenue for promotion of healthy development of traditional medicine industry and improvement of the quality standard system to enhance traditional medicine or product quality standards. In this study, we first summarized the main factors affecting the quality of traditional medicines and natural products and importance for safety and then presented the concept of background and relevant factors of Q-markers. Moreover, the modern science technology and related methods used to identify the chemical composition have been discussed. Especially, based on the systematic analysis and discussion of the basic properties and clinical features of natural products, we have discussed new trends and effective strategies for identifying relevant Q-markers from herbs and probed the future research directions and challenges.

20.
RSC Adv ; 8(53): 30061-30070, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35546810

RESUMEN

In this study, a combination of network pharmacology and metabolomics was used to explore the mechanism by which mirabilite regulates bile acid metabolism in the treatment of colorectal cancer. The PharmMapper web server was applied to make preliminary predictions for the treatment targets of mirabilite and to predict the interaction between mirabilite and disease targets using Discovery Studio 2.5. Furthermore, the urine metabolic profile was analyzed by the UPLC-Q-TOF-MS technology. The original data were processed by Progenesis QI software and analyzed by multivariate pattern recognition, which allowed us to reveal the metabolic disturbance in colorectal cancer and explain the therapeutic effect of mirabilite. The network pharmacology results showed that mirabilite can act on the disease targets, and the sites of action include amino acid residues Arg-364 and Asp-533, as well as nucleotides TPC-11, DG-112 and DA-113. Based on metabolomics, potential biomarkers were found to lie in the relevant pathways of bile acid metabolism, such as taurine, chenodeoxycholic acid, cholic acid, and deoxycholic acid. The results showed that mirabilite could regulate the distribution of overall metabolic disturbance, and bile acid metabolism was the main targeted pathway. Additionally, we predicted the upstream targets by ingenuity pathway analysis and found that mirabilite played a significant role in regulating the bile acid-related biomarkers, which allowed comprehensive analysis of the effect of mirabilite on colorectal cancer. This study fully explained the role of mirabilite in inhibiting colorectal cancer, which mainly occurs through bile acid metabolism, via the approach of network pharmacology combined with functional metabolomics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...