Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 9(3): e0205721, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935430

RESUMEN

The alarmone ppGpp plays an important role in the survival of bacteria by triggering the stringent response when exposed to environmental stress. Although Xanthomonas campestris pv. campestris (Xcc), which causes black rot disease in crucifers, is a representative species of Gram-negative phytopathogenic bacteria, relatively little is known regarding the factors influencing the stringent response in this species. However, previous studies in other Gram-negative bacteria have indicated that RelA and SpoT play a critical role in ppGpp synthesis. The current study found that these proteins also had an important role in Xcc, with a ΔrelAΔspoT double mutant being unable to produce ppGpp, resulting in changes to phenotype including reduced production of exopolysaccharides (EPS), exoenzymes, and biofilm, as well the loss of swarming motility and pathogenicity. The ppGpp-deficient mutant also exhibited greater sensitivity to environment stress, being almost incapable of growth on modified minimal medium (mMM) and having a much greater propensity to enter the viable but nonculturable (VBNC) state in response to oligotrophic conditions (0.85% NaCl). These findings much advance our understanding of the role of ppGpp in the biology of Xcc and could have important implications for more effective management of this important pathogen. IMPORTANCE Xanthomonas campestris pv. campestris (Xcc) is a typical seedborne phytopathogenic bacterium that causes large economic losses worldwide, and this is the first original research article to investigate the role of ppGpp in this important species. Here, we revealed the function of RelA and SpoT in ppGpp production, physiology, pathogenicity, and stress resistance in Xcc. Most intriguingly, we found that ppGpp levels and downstream ppGpp-dependent phenotypes were mediated predominantly by SpoT, with RelA having only a supplementary role. Taken together, the results of the current study provide new insight into the role of ppGpp in the biology of Xcc, which could also have important implications for the role of ppGpp in the survival and pathogenicity of other pathogenic bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , GTP Pirofosfoquinasa/metabolismo , Guanosina Tetrafosfato/biosíntesis , Enfermedades de las Plantas/microbiología , Pirofosfatasas/metabolismo , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/patogenicidad , Proteínas Bacterianas/genética , GTP Pirofosfoquinasa/genética , Pirofosfatasas/genética , Raphanus/microbiología , Virulencia , Xanthomonas campestris/enzimología , Xanthomonas campestris/genética
2.
J Agric Food Chem ; 67(31): 8493-8499, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31310523

RESUMEN

The ginsenosides Rh2 and Rg3 induce tumor cell apoptosis, inhibit tumor cell proliferation, and restrain tumor invasion and metastasis. Despite Rh2 and Rg3 having versatile pharmacological activities, contents of them in natural ginseng are extremely low. To produce ginsenosides Rh2 and Rg3, the saponin-producing capacity of endophytic bacteria isolated from Panax ginseng was investigated. In this work, 81 endophytic bacteria isolates were taken from ginseng roots by tissue separation methods. Among them, strain PDA-2 showed the highest capacity to produce the rare ginsenosides; the concentrations of rare ginsenosides Rg3 and Rh2 reached 62.20 and 18.60 mg/L, respectively. On the basis of phylogenetic analysis, it was found that strain PDA-2 belongs to the genus Agrobacterium and was very close to Agrobacterium rhizogenes.


Asunto(s)
Bacterias/metabolismo , Endófitos/metabolismo , Ginsenósidos/biosíntesis , Panax/microbiología , Agrobacterium/clasificación , Agrobacterium/genética , Agrobacterium/aislamiento & purificación , Agrobacterium/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Filogenia , Raíces de Plantas/microbiología
3.
J Environ Manage ; 222: 409-419, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29883876

RESUMEN

Pollution caused by volatile organic compounds (VOCs) and odorous pollutants in the air can produce severe environmental problems. In recent years, the emission control of VOCs and odorous pollutants has become a crucial issue owing to the adverse effect on humans and the environment. For treating these compounds, biotrickling filter (BTF) technology acts as an environment friendly and cost-effective alternative to conventional air pollution control technologies. Besides, low concentration of VOCs and odorous pollutants can also be effectively removed using BTF systems. However, the VOCs and odorants removal performance by BTF may be limited by the hydrophobicity, toxicity, and low bioavailability of these pollutants. To solve these problems, this review summarizes the design, mechanism, and common analytical methods of recent BTF advances. In addition, the operating conditions, mass transfer, packing materials and microorganisms (which are the critical parameters in a BTF system) were evaluated and discussed in view of improving the removal performance of BTFs. Further research on these specific topics, together with the combination of BTF technology with other technologies, should improve the removal performance of BTFs.


Asunto(s)
Reactores Biológicos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos , Biodegradación Ambiental , Filtración , Gases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...