Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1278600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298919

RESUMEN

Candida albicans is a commensal microorganism in the human gut but occasionally causes invasive C. albicans infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (Rag2-/-il2γc-/-) mouse model to investigate the gut microbiota alterations caused by C. albicans throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of Firmicutes, particularly Lachnospiraceae and Ruminococcaceae, as well as a significant decrease in the abundance of Candidatus Arthromitus in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant (cph1/cph1 efg1/efg1) HLC54 strain of C. albicans. However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed Bacteroides vulgatus as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the B. vulgatus abundance and fungal load was found, and the negative correlation between the Candidatus Arthromitus abundance and fungal load after exposure to C. albicans suggested that C. albicans might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic C. albicans on the gut microbiota and identify the abundance of B. vulgatus as a microbiota signature associated with ICA in an immunodeficient mouse model.


Asunto(s)
Candidiasis Invasiva , Candidiasis , Microbiota , Humanos , Animales , Ratones , Candida albicans , Tracto Gastrointestinal/microbiología
2.
J Biomed Sci ; 29(1): 37, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681239

RESUMEN

BACKGROUND: Calls for the coronavirus to be treated as an endemic illness, such as the flu, are increasing. After achieving high coverage of COVID-19 vaccination, therapeutic drugs have become important for future SARS-CoV-2 variant outbreaks. Although many monoclonal antibodies have been approved for emergency use as treatments for SARS-CoV-2 infection, some monoclonal antibodies are not authorized for variant treatment. Broad-spectrum monoclonal antibodies are unmet medical needs. METHODS: We used a DNA prime-protein boost approach to generate high-quality monoclonal antibodies. A standard ELISA was employed for the primary screen, and spike protein-human angiotensin-converting enzyme 2 blocking assays were used for the secondary screen. The top 5 blocking clones were selected for further characterization, including binding ability, neutralization potency, and epitope mapping. The therapeutic effects of the best monoclonal antibody against SARS-CoV-2 infection were evaluated in a hamster infection model. RESULTS: Several monoclonal antibodies were selected that neutralize different SARS-CoV-2 variants of concern (VOCs). These VOCs include Alpha, Beta, Gamma, Delta, Kappa and Lambda variants. The high neutralizing antibody titers against the Beta variant would be important to treat Beta-like variants. Among these monoclonal antibodies, mAb-S5 displays the best potency in terms of binding affinity and neutralizing capacity. Importantly, mAb-S5 protects animals from SARS-CoV-2 challenge, including the Wuhan strain, D614G, Alpha and Delta variants, although mAb-S5 exhibits decreased neutralization potency against the Delta variant. Furthermore, the identified neutralizing epitopes of monoclonal antibodies are all located in the receptor-binding domain (RBD) of the spike protein but in different regions. CONCLUSIONS: Our approach generates high-potency monoclonal antibodies against a broad spectrum of VOCs. Multiple monoclonal antibody combinations may be the best strategy to treat future SARS-CoV-2 variant outbreaks.


Asunto(s)
Anticuerpos Monoclonales , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Vacunas contra la COVID-19 , Cricetinae , Humanos , Glicoproteína de la Espiga del Coronavirus/genética
3.
Huan Jing Ke Xue ; 41(5): 2310-2319, 2020 May 08.
Artículo en Chino | MEDLINE | ID: mdl-32608849

RESUMEN

Sulfate-radical-based advanced oxidation technologies by activation of peroxymonosulfate (PMS) have been widely applied for decontamination of wastewater, although our knowledge on the direct oxidation of organic contaminants by PMS is still limited. In this study, the direct interaction between PMS and sulfasalazine (SSZ), a widely used antibiotic, was investigated systematically, including the reaction kinetics and transformation pathways. The results revealed that SSZ degradation obeyed a pseudo-first-order kinetic model and increasing initial PMS concentration or ionic strength could accelerate the degradation rates; alkaline conditions were beneficial to SSZ removal by PMS; and the presence of Cl- markedly promoted SSZ decay. The degradation of SSZ by PMS was inhibited in surface water. By using liquid chromatography-mass spectrometry as well as reaction site identification, two different oxidation pathways were proposed, including hydroxylation and SO2 extrusion. The findings obtained in this study could help to evaluate the feasibility of decontamination of sulfonamide antibiotics by non-activated PMS.

4.
Front Immunol ; 11: 546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300346

RESUMEN

Dengue is an emerging mosquito-borne disease, and the use of prophylactic vaccines is still limited. We previously developed a tetravalent dengue vaccine (rMV-TDV) by a recombinant measles virus (MV) vector expressing envelope protein domain III (ED3). In this study, we used dengue-susceptible AG129 mice to evaluate the protective and/or pathogenic immune responses induced by rMV-TDV. Consistent with the previous study, rMV-TDV-immunized mice developed a significant neutralizing antibody response against all serotypes of DENV, as well as a significant IFN-γ response biased to DENV-3, compared to the vector controls. We further demonstrated that this DENV-3-specific IFN-γ response was dominated by one CD4+ T-cell epitope located in E349-363. After DENV-2 challenge, rMV-TDV-immunized mice showed a significantly lower viremia and no inflammatory cytokine increase compared to the vector controls, which had an ~100 times higher viremia and a significant increase in IFN-γ and TNF-α. As a correlate of protection, a robust memory IFN-γ response specific to DENV-2 was boosted in rMV-TDV-immunized mice after challenge. This result suggested that pre-existing DENV-3-dominated T-cell responses did not cross-react, but a DENV-2-specific IFN-γ response, which was undetectable during immunization, was recalled. Interestingly, this recalled T-cell response recognized the epitope in the same position as the E349-363 but in the DENV-2 serotype. This result suggested that immunodomination occurred in the CD4+ T-cell epitopes between dengue serotypes after rMV-TDV vaccination and resulted in a DENV-3-dominated CD4+ T-cell response. Although the significant increase in IgG against both DENV-2 and -3 suggested that cross-reactive antibody responses were boosted, the increased neutralizing antibodies and IgG avidity still remained DENV-2 specific, consistent with the serotype-specific T cell response post challenge. Our data reveal that immunodomination caused a biased T-cell response to one of the dengue serotypes after tetravalent dengue vaccination and highlight the roles of cross-reactive T cells in dengue protection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Dengue/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes/inmunología , Vacunas Combinadas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Vectores Genéticos , Virus del Sarampión , Ratones , Serogrupo , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/inmunología
5.
Front Microbiol ; 11: 619878, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488563

RESUMEN

Candida albicans is the leading cause of candidemia or other invasive candidiasis. Gastrointestinal colonization has been considered as the primary source of candidemia. However, few established mouse models that mimic this infection route are available. In the present study, we established a mouse model of disseminated candidiasis developed through the translocation of Candida from the gut. In this study, we developed a novel C. albicans GI colonization and dissemination animal model by using severe combined immunodeficient Rag2-/-IL2γc-/- (Rag2γc) mice, which lack functional T, B, NK cells, and IL2γc-dependent signaling. Rag2γc mice were highly susceptible to C. albicans gastrointestinal infection even in the presence of the gut microbiota. Within 4 weeks post infection, Rag2γc mice showed dose-dependent weight loss and disseminated candidiasis in more than 58% (7/12) of moribund mice. Histological analysis demonstrated abundant hyphae penetrating the mucosa, with significant neutrophilic infiltration in mice infected with wild-type C. albicans but not a filamentation-defective mutant. In moribund Rag2γc mice, the necrotic lesions and disrupted epithelial cells were associated with C. albicans hyphae. Notably, removal of the gut microbiota by antibiotics exacerbated the severity of fungal infection in Rag2γc mice, as demonstrated by elevated fungal burdens and accelerated weight loss and death. Furthermore, higher fungal burden and IL-1ß expression were prominently noted in the stomach of Rag2γc mice. In fact, a significant increase in circulating proinflammatory cytokines, including IL-6, TNF-α, and IL-10, indicative of a septic response, was evident in infected Rag2γc mice. Additionally, Rag2γc mice exhibited significantly lower levels of IL-22 but not IFN-γ or IL-17A than wild-type B6 mice, suggesting that IL-22 plays a role in C. albicans gastrointestinal infection. Collectively, our analysis of the Rag2γc mouse model revealed features of C. albicans gastrointestinal colonization and dissemination without the interference from antibiotics or chemotherapeutic agents, thus offering a new investigative tool for delineating the pathogenesis of C. albicans and its cross-talk with the gut microbiota.

6.
ACS Nano ; 11(3): 3166-3177, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28221751

RESUMEN

This article describes the design and synthesis of donor-bridge-acceptor-based semiconducting polymer dots (Pdots) that exhibit narrow-band emissions, ultrahigh brightness, and large Stokes shifts in the near-infrared (NIR) region. We systematically investigated the effect of π-bridges on the fluorescence quantum yields of the donor-bridge-acceptor-based Pdots. The Pdots could be excited by a 488 or 532 nm laser and have a high fluorescence quantum yield of 33% with a Stokes shift of more than 200 nm. The emission full width at half-maximum of the Pdots can be as narrow as 29 nm, about 2.5 times narrower than that of inorganic quantum dots at the same emission wavelength region. The average per-particle brightness of the Pdots is at least 3 times larger than that of the commercially available quantum dots. The excellent biocompatibility of these Pdots was demonstrated in vivo, and their specific cellular labeling capability was also approved by different cell lines. By taking advantage of the durable brightness and remarkable stability of these NIR fluorescent Pdots, we performed in vivo microangiography imaging on living zebrafish embryos and long-term tumor monitoring on mice. We anticipate these donor-bridge-acceptor-based NIR-fluorescent Pdots with narrow-band emissions to find broad use in a variety of multiplexed biological applications.


Asunto(s)
Diseño de Fármacos , Imagen Óptica , Polímeros/química , Puntos Cuánticos/química , Animales , Línea Celular Tumoral , Femenino , Humanos , Rayos Infrarrojos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente , Estructura Molecular , Neoplasias Experimentales/diagnóstico por imagen , Polímeros/síntesis química , Semiconductores , Pez Cebra/embriología
7.
J Mater Chem B ; 3(46): 9060-9066, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32263037

RESUMEN

A nucleus penetrating vehicle is indispensible when seeking to deliver plasmid DNA for gene transfection. In this study, dendrimers with terminal thymine groups were synthesized to meet this objective. Through modifications of the hydrophilic and neutral thymine moieties on hyperbranched peripheries, these dendrimers can achieve biosafety, efficient endosomal escape ability, cytosolic accessibility, and eventually, nuclear entry for the purposes of gene transfection. After optimization of the thymine coverages, better gene expression can only be achieved while replacing ∼50% of the amine groups of a dendrimer with thymine moieties. Presumably, a specific dendrimer comprising thymine and primary amines might possess a synergistic effect to promote pDNA condensation via the cooperation of electrostatic interaction and hydrogen bonding. In comparison, a dendrimer entirely capped by thymine can lose external amines, decreasing pDNA complexity and stability, which would cause poor gene transfection. The utility of specific thymine-capped dendrimers in vivo level was demonstrated to successfully and efficiently deliver plasmid DNA at a low complex ratio into mouse muscle by intramuscular injection. Upon the easy accessibility of intramuscular administration, the capability of thymine-capped dendrimers might be potentially used in immunotherapeutic gene transfection in the future.

8.
Adv Mater ; 25(36): 5067-73, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23913796

RESUMEN

We report on caged Pt nanoclusters that are able to exert tumor-inside activation for anticancer chemotherapeutics and to minimize systemic toxicity. By shrinking the Pt size to 1 nm, it possesses corrodibility for dissolution in weakly acidic organelles to release toxic Pt ions. The therapeutic effect in exerting tumor-inside activation is confirmed in vivo by post-modifying a pH-cleavable PEG corona and mixing it with a tumor-homing peptide for tumour suppression.


Asunto(s)
Nanoestructuras/química , Platino (Metal)/química , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/toxicidad , Carboplatino/administración & dosificación , Carboplatino/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Cisplatino/toxicidad , Dendrímeros/química , Portadores de Fármacos/química , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Radiografía , Trasplante Heterólogo
9.
J Drug Target ; 20(7): 551-60, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22758393

RESUMEN

RNAi-mediated gene silencing has great potential for treating various diseases, including cancer, by delivering a specific short interfering RNA (siRNA) to knock down pathogenic mRNAs and suppress protein translation. Although many researchers are dedicated to devising polymer-based vehicles for exogenous in vitro siRNA transfection, few synthetic vehicles are feasible in vivo. Recent studies have presented copolymer-based vectors that are minimally immunogenic and facilitate highly efficient internalizing of exogenous siRNA, compared with homopolymer-based vectors. Cationic segments, organelle-escape units, and degradable fragments are essential to a copolymer-based vehicle for siRNA delivery. The majority of these cationic segments are derived from polyamines, including polylysine, polyarginine, chitosan, polyethylenimines and polyamidoamine dendrimers. Not only do these cationic polyamines protect siRNA, they can also promote disruption of endosomal membranes. Degradable fragments of copolymers must be derived from various polyelectrolytes to release the siRNA once the complexes enter the cytoplasm. This review describes recent progress in copolymer-mediated siRNA delivery, including various building blocks for biocompatible copolymers for efficient in vitro siRNA delivery, and a useful basis for addressing the challenges of in vivo siRNA delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Polímeros/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Endosomas/metabolismo , Vectores Genéticos/administración & dosificación , Vectores Genéticos/química , Poliaminas/administración & dosificación , Poliaminas/química , Polímeros/química , ARN Interferente Pequeño/química
10.
Neurochem Res ; 36(11): 2008-21, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21671107

RESUMEN

Methadone and buprenorphine are used in maintenance therapy for heroin addicts. In this study, we compared their effects on adenylate cyclase (AC) activity in human embryonic kidney (HEK) 293 cells stably overexpressing human µ-opioid receptor (MOR) and nociceptin/opioid receptor-like 1 receptor (ORL1) simultaneously. After acute exposure, methadone inhibited AC activity; however, buprenorphine induced compromised AC inhibition. When naloxone was introduced after 30 min incubation with methadone, the AC activity was enhanced. This was not observed in the case of buprenorphine. Enhancement of the AC activity was more significant when the incubation lasted for 4 h, and prolonged exposure to buprenorphine elevated the AC activity as well. The removal of methadone and buprenorphine by washing also obtained similar AC superactivation as that revealed by naloxone challenge. The study demonstrated that methadone and buprenorphine exert initially different yet eventually convergent adaptive changes of AC activity in cells coexpressing human MOR and ORL1 receptors.


Asunto(s)
Buprenorfina/farmacología , Metadona/farmacología , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/efectos de los fármacos , Interacciones Farmacológicas , Activación Enzimática , Células HEK293 , Humanos , Naloxona/farmacología , Péptidos Opioides/agonistas , Receptores Opioides/biosíntesis , Receptores Opioides mu/agonistas , Receptores Opioides mu/biosíntesis , Receptor de Nociceptina , Nociceptina
11.
J Biomed Sci ; 17: 46, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20529288

RESUMEN

BACKGROUND: Abuse of addictive substances is a serious problem that has a significant impact on areas such as health, the economy, and public safety. Heroin use among young women of reproductive age has drawn much attention around the world. However, there is a lack of information on effects of prenatal exposure to opioids on their offspring. In this study, an animal model was established to study effects of prenatal exposure to opioids on offspring. METHODS: Female pregnant Sprague-Dawley rats were sub-grouped to receive (1) vehicle, (2) 2-4 mg/kg morphine (1 mg/kg increment per week), (3) 7 mg/kg methadone, and (4) 3 mg/kg buprenorphine, subcutaneously, once or twice a day from E3 to E20. The experiments were conducted on animals 8-12 weeks old and with body weight between 250 and 350 g. RESULTS: Results showed that prenatal exposure to buprenorphine caused higher mortality than other tested substance groups. Although we observed a significantly lower increase in body weight in all of the opioid-administered dams, the birth weight of the offspring was not altered in all treated groups. Moreover, no obvious behavioral abnormality or body-weight difference was noted during the growing period (8-12 weeks) in all offspring. When the male offspring received morphine injection twice a day for 4 days, the prenatally opioid-exposed rats more quickly developed a tolerance to morphine (as shown by the tail-flick tests), most notably the prenatally buprenorphine-exposed offspring. However, the tolerance development to methadone or buprenorphine was not different in offspring exposed prenatally to methadone or buprenorphine, respectively, when compared with that of the vehicle controlled group. Similar results were also obtained in the female animals. CONCLUSIONS: Animals prenatally exposed to morphine, methadone, or buprenorphine developed tolerance to morphine faster than their controlled mates. In our animal model, prenatal exposure to buprenorphine also resulted in higher mortality and much less sensitivity to morphine-induced antinociception than prenatal exposure to morphine or methadone. This indicates that buprenorphine in higher doses may not be an ideal maintenance drug for treating pregnant women. This study provides a reference in selecting doses for clinical usage in treating pregnant heroin addicts.


Asunto(s)
Buprenorfina/administración & dosificación , Tolerancia a Medicamentos/fisiología , Metadona/administración & dosificación , Dependencia de Morfina/tratamiento farmacológico , Dependencia de Morfina/etiología , Morfina/administración & dosificación , Efectos Tardíos de la Exposición Prenatal/etiología , Analgésicos/administración & dosificación , Analgésicos/toxicidad , Animales , Buprenorfina/toxicidad , Modelos Animales de Enfermedad , Femenino , Dependencia de Heroína/tratamiento farmacológico , Humanos , Masculino , Metadona/toxicidad , Morfina/toxicidad , Dependencia de Morfina/fisiopatología , Dimensión del Dolor , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
12.
Brain Res ; 1265: 196-204, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19236855

RESUMEN

We have reported previously that prenatal bacterial lipopolysaccharide (LPS) exposure at the gestation window of vulnerability could consistently lead to dopamine (DA) neuron loss in the substantia nigra (SN). Thus, we suggested that prenatal LPS exposure might represent as a risk factor for the development of Parkinson's disease (PD). Here, we report that the same exposure could lead to tryptophan hydroxylase (TPH, a serotonin neuron marker) immunoreactive cell loss in the dorsal raphe nucleus (DRN). Twenty two pups born to saline or LPS-injected gravid female rats at E10.5 were used in the current study. Twelve male pups at age of 4 months (6 from each of two prenatal groups) were used for the tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) immunochemistry studies. The other 10 (5 from each of two prenatal groups) males were used in the biochemistry studies. A 29% THir neuron loss in the substantia nigra (F(1,11)=17.573, P=0.002) and a 31% TPHir neuron loss (F(1,11)=44.005, P<0.001) in the DRN were seen. Significant DA and 5-hydroxytryptamine (5-HT) reductions (P<0.05) were found in the frontal cortex, nucleus accumbens, striatum, amygdala, hippocampus, and hypothalamus. The losses of DA and 5-HT were accompanied by the significant increases in homovanillic acid over DA and 5-hydroxyindoleacetic acid over 5-HT ratios in the most areas tested. These data further validate prenatal LPS exposure as a model of PD since DA and 5-HT changes similar to those seen in PD patients. They also suggest that prenatal LPS might be a risk factor for other diseases including mood disorders.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Dopamina/deficiencia , Lipopolisacáridos/toxicidad , Neuronas/metabolismo , Neuronas/patología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Serotonina/deficiencia , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Femenino , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Hipocampo/metabolismo , Hipocampo/patología , Ácido Homovanílico/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patología , Inmunohistoquímica , Lipopolisacáridos/administración & dosificación , Masculino , Degeneración Nerviosa/etiología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Núcleos del Rafe/metabolismo , Núcleos del Rafe/patología , Ratas , Sustancia Negra/metabolismo , Sustancia Negra/patología , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA