Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 216, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069236

RESUMEN

The yellow-throated marten (Martes flavigula) is a medium-sized carnivore that is widely distributed across much of Asia and occupies an extensive variety of habitats. We reported a high-quality genome assembly of this organism that was generated using Oxford Nanopore and Hi-C technologies. The final genome sequences contained 215 contigs with a total size of 2,449.15 Mb and a contig N50 length of 68.60 Mb. Using Hi-C analysis, 2,419.20 Mb (98.78%) of the assembled sequences were anchored onto 21 linkage groups. Merqury evaluation suggested that the genome was 94.95% complete with a QV value of 43.75. Additionally, the genome was found to comprise approximately 39.74% repeat sequences, of which long interspersed elements (LINE) that accounted for 26.13% of the entire genome, were the most abundant. Of the 20,464 protein-coding genes, prediction and functional annotation was successfully performed for 20,322 (99.31%) genes. The high-quality, chromosome-level genome of the marten reported in this study will serve as a reference for future studies on genetic diversity, evolution, and conservation biology.


Asunto(s)
Genoma , Mustelidae , Animales , Asia , Cromosomas/genética , Anotación de Secuencia Molecular , Mustelidae/genética , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
2.
Animals (Basel) ; 12(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36139327

RESUMEN

Microbial symbiotic associations may be beneficial, neutral, or harmful to the host. Symbionts exploit the host space and nutrition or use hosts as carriers to spread to other environments. In order to investigate the fecal bacterial communities of wild sika deer (Cervus nippon) and wapiti (Cervus canadensis), this study aimed to sequence and explore the composition of, and similarity between, the fecal microbiota of sika deer and wapiti using high-throughput sequencing. The composition and relative abundance of fecal microbiota, alpha diversity, and differences in beta diversity between the two species were analyzed. We found that no pathogenic bacteria were present in large quantities in the hosts. The dominant bacterial phyla found in the two deer species were similar and included Firmicutes, Bacteroidetes, Proteobacteria, and Spirochaetes. Moreover, the deer also shared similar dominant genera, including the Rikenellaceae RC9 gut group, Ruminococcaceae_UCG-010, Ruminococcaceae_UCG-005, and Bacteroides. These results demonstrate that the sika deer and wapiti share a similar fecal microbiotal structure, probably due to their common diet and living environment, but there was some evidence of a difference at the species level. These analyses provide new insights into the health status of deer populations outside protected environments and offer a scientific framework for monitoring the health conditions of sika deer and wapiti.

3.
AMB Express ; 10(1): 169, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32945998

RESUMEN

Sable (Martes zibellina), a member of family Mustelidae, order Carnivora, is primarily distributed in the cold northern zone of Eurasia. The purpose of this study was to explore the intestinal flora of the sable by metagenomic library-based techniques. Libraries were sequenced on an Illumina HiSeq 4000 instrument. The effective sequencing data of each sample was above 6000 M, and the ratio of clean reads to raw reads was over 98%. The total ORF length was approximately 603,031, equivalent to 347.36 Mbp. We investigated gene functions with the KEGG database and identified 7140 KEGG ortholog (KO) groups comprising 129,788 genes across all of the samples. We selected a subset of genes with the highest abundances to construct cluster heat maps. From the results of the KEGG metabolic pathway annotations, we acquired information on gene functions, as represented by the categories of metabolism, environmental information processing, genetic information processing, cellular processes and organismal systems. We then investigated gene function with the CAZy database and identified functional carbohydrate hydrolases corresponding to genes in the intestinal microorganisms of sable. This finding is consistent with the fact that the sable is adapted to cold environments and requires a large amount of energy to maintain its metabolic activity. We also investigated gene functions with the eggNOG database; the main functions of genes included gene duplication, recombination and repair, transport and metabolism of amino acids, and transport and metabolism of carbohydrates. In this study, we attempted to identify the complex structure of the microbial population of sable based on metagenomic sequencing methods, which use whole metagenomic data, and to map the obtained sequences to known genes or pathways in existing databases, such as CAZy, KEGG, and eggNOG. We then explored the genetic composition and functional diversity of the microbial community based on the mapped functional categories.

4.
Mol Biotechnol ; 60(1): 12-20, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29128956

RESUMEN

The metalloregulatory protein MerR which plays important roles in mer operon system exhibits high affinity and selectivity toward mercury (II) (Hg2+). In order to improve the adsorption ability of Saccharomyces cerevisiae for Hg2+, MerR was displayed on the surface of S. cerevisiae for the first time with an α-agglutinin-based display system in this study. The merR gene was synthesized after being optimized and added restriction endonuclease sites EcoR I and Mlu I. The display of MerR was indirectly confirmed by the enhanced adsorption ability of S. cerevisiae for Hg2+ and colony PCR. The hydride generation atomic absorption spectrometry was applied to measure the Hg2+ content in water. The engineered yeast strain not only showed higher tolerance to Hg, but also their adsorption ability was much higher than that of origin and control strains. The engineered yeast could adsorb Hg2+ under a wide range of pH levels, and it could also adsorb Hg2+ effectively with Cd2+ and Cu2+ coexistence. Furthermore, the engineered yeast strain could adsorb ultra-trace Hg2+ effectively. The results above showed that the surface-engineered yeast strain could adsorb Hg2+ under complex environmental conditions and could be used for the biosorption and bioremediation of environmental Hg contaminants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Mercurio/farmacocinética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Adsorción , Proteínas Bacterianas/genética , Cadmio/farmacología , Cobre/farmacología , Proteínas de Unión al ADN/genética , Concentración de Iones de Hidrógeno , Factor de Apareamiento/genética , Factor de Apareamiento/metabolismo , Mercurio/metabolismo , Plásmidos/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
5.
Sci Rep ; 7(1): 11332, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900198

RESUMEN

Next Generation Sequencing has been widely used to characterize the prevalence of fecal bacteria in many different species. In this study, we attempted to employ a low-cost and high-throughput sequencing model to discern information pertaining to the wolf microbiota. It is hoped that this model will allow researchers to elucidate potential protective factors in relation to endangered wolf species. We propose three high-throughput sequencing models to reveal information pertaining to the micro-ecology of the wolf. Our analyses advised that, among the three models, more than 100,000 sequences are more appropriate to retrieve the communities' richness and diversity of micro-ecology. In addition, the top five wolf microbiome OTUs (99%) were members of the following five phyla: Bacteroidetes, Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria. While Alloprevotella, Clostridium_sensu_stricto_1, Anaerobiospirillum, Faecalibactreium and Streptococcus were shared by all samples, their relative abundances were differentially represented between domestic dogs and other wolves. Our findings suggest that altitude, human interference, age, and climate all contribute towards the micro-ecology of the wolf. Specifically, we observed that genera Succinivibrio and Turicibacter are significantly related to altitude and human interference (including hunting practices).


Asunto(s)
Ambiente , Microbiota , Lobos , Animales , Biodiversidad , Biología Computacional/métodos , Perros , Heces/microbiología , Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Metagenómica/métodos , Filogenia
6.
PeerJ ; 5: e3708, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28828281

RESUMEN

As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs) in reptiles, we identified Tas2r genes in 19 genomes (species) corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death) of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1) gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC) analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles.

7.
AMB Express ; 7(1): 81, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28413853

RESUMEN

The gut microbiota of mammals is a complex ecosystem, which is essential for maintaining gut homeostasis and the host's health. The high throughput sequencing allowed us to gain a deeper insight into the bacterial structure and diversity. In order to improve the health status of the endangered golden takins, we first characterized the fecal microbiota of healthy golden takins using high throughput sequencing of the 16S rRNA genes V3-V4 hypervariable regions. Our results showed that, Firstly, the gut microbiota community comprised 21 phyla, 40 classes, 62 orders, 96 families, and 216 genera. Firmicutes (67.59%) was the most abundant phylum, followed by Bacteroidetes (23.57%) and Proteobacteria (2.37%). Secondly, the golden takin maintained higher richness in spring than in the winter while community diversity and evenness was not significantly different. Thirdly, four female golden takins demonstrated highly similar microbiota and the five golden takin males had relatively highly similar microbiota. All of our results might indicate that the fecal microbiota of golden takins were influenced by the season and the animal's sex. The findings provided theoretical basis regarding the gut microbiota of golden takins and may offer new insights to protect this endangered species.

8.
Amino Acids ; 49(7): 1159-1167, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28417226

RESUMEN

Bitter taste receptors (Tas2rs) play important roles in mammalian defense mechanisms by helping animals detect and avoid toxins in food. Although Tas2r genes have been widely studied in several mammals, minimal research has been performed in canids. To analyze the genetic basis of Tas2r genes in canids, we first identified Tas2r genes in the wolf, maned wolf, red fox, corsac fox, Tibetan fox, fennec fox, dhole and African hunting dog. A total of 183 Tas2r genes, consisting of 118 intact genes, 6 partial genes and 59 pseudogenes, were detected. Differences in the pseudogenes were observed among nine canid species. For example, Tas2r4 was a pseudogene in the dog but might play a functional role in other canid species. The Tas2r42 and Tas2r10 genes were pseudogenes in the maned wolf and dhole, respectively, and the Tas2r5 and Tas2r34 genes were pseudogenes in the African hunting dog; however, these genes were intact genes in other canid species. The differences in Tas2r pseudogenes among canids might suggest that the loss of intact Tas2r genes in canid species is species-dependent. We further compared the 183 Tas2r genes identified in this study with Tas2r genes from ten additional carnivorous species to evaluate the potential influence of diet on the evolution of the Tas2r gene repertoire. Phylogenetic analysis revealed that most of the Tas2r genes from the 18 species intermingled across the tree, suggesting that Tas2r genes are conserved among carnivores. Within canids, we found that some Tas2r genes corresponded to the traditional taxonomic groupings, while some did not. PIC analysis showed that the number of Tas2r genes in carnivores exhibited no positive correlation with diet composition, which might be due to the limited number of carnivores included in our study.


Asunto(s)
Canidae/genética , Filogenia , Seudogenes , Receptores Acoplados a Proteínas G/genética , Animales , Especificidad de la Especie
9.
Appl Microbiol Biotechnol ; 100(8): 3577-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26728019

RESUMEN

Intestinal microbes are part of a complex ecosystem. They have a mutual relationship with the host and play an essential role in maintaining the host's health. To optimize the feeding strategies and improve the health status of the dhole, which is an endangered species, we analyzed the structure of fecal microbes in four captive dholes using high-throughput Illumina sequencing targeting the V3-V4 region of the 16S rRNA gene. The diversity indexes and rarefaction curves indicated high microbial diversity in the intestines of the four dholes. The average number of operational taxonomical units (OTUs) in the four samples was 1196, but the number of OTUs common to all libraries was 126, suggesting only a few dominant species. Phylogenetic analysis identified 19 prokaryotic phyla from the 16S rRNA gene sequences, of which only 5 phyla were core microbiota: Bacteroidetes (21.63-38.97 %), Firmicutes (20.97-44.01 %), Proteobacteria (9.33-17.60 %), Fusobacteria (9.11-17.90 %), and Actinobacteria (1.22-2.87 %). These five phyla accounted for 97 % of the bacteria in all the dholes apart from one, in which 78 % of the bacteria were from these phyla. The results of our study provide an effective theoretical basis from which to reach an understanding of the biological mechanisms relevant to the protection of this endangered species.


Asunto(s)
Bacterias/aislamiento & purificación , Canidae/microbiología , Heces/microbiología , Microbiota , ARN Ribosómico 16S/genética , Animales , Bacterias/clasificación , Bacterias/genética , Especies en Peligro de Extinción , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia , ARN Ribosómico 16S/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...