Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(12): 21977-21987, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859538

RESUMEN

Quantum teleportation is a building block in quantum computation and quantum communication. The continuous-variable polarization squeezed state is a key resource in quantum networks, offering advantages for long-distance distribution and direct interfacing of quantum nodes. Although polarization squeezed state has been generated and distributed between remote users, it is a long-standing goal to implement controlled quantum teleportation of the polarization squeezed state with multiple remote users. Here, we propose a feasible scheme to teleport a polarization squeezed state among multiple remote users under control. The polarization state is transferred between different remote quantum networks, and the controlled quantum teleportation of the polarization state can be implemented in one quantum network involving multiple remote users. The results show that such a controlled quantum teleportation can be realized with 36 users through about 6-km free-space or fiber quantum channels, where the fidelity of 0.352 is achieved beyond the classical limit of 0.349 with an input squeezing variance of 0.25. This scheme provides a direct reference for the experimental implementation of remote and controlled quantum teleportation of polarization states, thus enabling more teleportation-based quantum network protocols.

2.
Front Cardiovasc Med ; 11: 1324345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476381

RESUMEN

Objective: Cell division cycle 42 (CDC42) regulates CD4+ T-cell differentiation and participates in vascular stiffness and atherosclerosis and is involved in the progression of Stanford type B aortic dissection (TBAD). This study aimed to explore the correlation between serum CDC42 level and CD4+ T cell subsets and in-hospital mortality in TBAD patients. Methods: Serum CDC42 and peripheral blood T-helper (Th) 1, Th2, and Th17 cells were detected in 127 TBAD patients by enzyme-linked immunosorbent assay and flow cytometry, respectively. Serum CDC42 was also quantified in 30 healthy controls. Results: Serum CDC42 was decreased in TBAD patients vs. healthy controls (median [interquartile range (IQR)]: 418.0 (228.0-761.0) pg/ml vs. 992.0 (716.3-1,445.8) pg/ml, P < 0.001). In TBAD patients, serum CDC42 was negatively correlated with Th17 cells (P = 0.001), but not Th1 (P = 0.130) or Th2 cells (P = 0.098). Seven (5.5%) patients experienced in-hospital mortality. Serum CDC42 was reduced in patients who experienced in-hospital mortality vs. those who did not (median (IQR): 191.0 (145.0-345.0) pg/ml vs. 451.5 (298.3-766.8) pg/ml, P = 0.006). By receiver operating characteristic analysis, serum CDC42 showed a good ability for estimating in-hospital mortality [area under curve = 0.809, 95% confidence interval (CI) = 0.662-0.956]. By the multivariate logistic regression analysis, elevated serum CDC42 [odd ratio (OR) = 0.994, 95% CI = 0.998-1.000, P = 0.043] was independently correlated with lower risk of in-hospital mortality, while higher age (OR = 1.157, 95% CI = 1.017-1.316, P = 0.027) was an independent factor for increased risk of in-hospital mortality. Conclusion: Serum CDC42 negatively associates with Th17 cells and is independently correlated with decreased in-hospital mortality risk in TBAD patients.

3.
Nat Commun ; 13(1): 2368, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501315

RESUMEN

High-performance quantum memory for quantized states of light is a prerequisite building block of quantum information technology. Despite great progresses of optical quantum memories based on interactions of light and atoms, physical features of these memories still cannot satisfy requirements for applications in practical quantum information systems, since all of them suffer from trade-off between memory efficiency and excess noise. Here, we report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell in which a scheme of optimizing the spatial and temporal modes based on the time-reversal approach is applied. The memory efficiency up to 67 ± 1% is directly measured and a noise level close to quantum noise limit is simultaneously reached. It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities. Thus the realized quantum memory platform has been capable of preserving quantized optical states, and is ready to be applied in quantum information systems, such as distributed quantum logic gates and quantum-enhanced atomic magnetometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...