Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1535-1545, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005841

RESUMEN

To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Estreptozocina/farmacología , Dieta Alta en Grasa/efectos adversos , Proteómica , Inflamación , Serina-Treonina Quinasas TOR , Autofagia , Mamíferos
2.
J Ethnopharmacol ; 283: 114700, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34600076

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese and Korean medicine, Jowiseungki-tang (JST) is a prescription for diabetes mellitus (DM) treatment. However, little scientific evidence is known of its effect in diabetic condition. AIMS: We assessed the effects of JST on high-fat diet (HFD)-induced obesity with inflammatory condition in mice and to analyze the therapeutic function of JST on network pharmacology as well as targeted metabolomics. MATERIALS AND METHODS: JST administration at 100 mg/kg and 500 mg/kg for a period of 4 weeks in HFD-induced obese mice, body weight gain, energy utility, calorie intake, and levels of glucose, insulin, total cholesterol, triglyceride, LDL-cholesterol as well as interleukin-6 were measured. Measurements of HDL-cholesterol (HDL-C) were performed and compared to those of the control group. Moreover, the therapeutic function of JST on obesity was analyzed furtherly based on network pharmacology and targeted metabolomics methods. RESULTS: Administration of JST at 100 mg/kg and 500 mg/kg for a period of 4 weeks in HFD-induced obesity mice significantly decreased the body weight gain, energy utility, calorie intake, and levels of insulin, total cholesterol, LDL-cholesterol, triglyceride, and interleukin-6. However, HDL-cholesterol (HDL-C) levels showed marked elevation relative to control groups. JST administration strongly inhibited expressions of inducible nitric oxide synthase, inflammatory proteins, and cyclooxygenase-2 in the pancreas, stomach, and liver tissues, and reduced hepatic steatosis and pancreatic hyperplasia. In network pharmacological analysis, the putative functional targets of JST are underlie on modulation of cofactor-, coenzyme-, and fatty acid-bonding, insulin resistance, and inflammatory response, fine-tuned the phosphatase binding and signal pathway activation, such as mitogen activated protein kinases, phosphatidylinositol 3-kinases/protein kinase B, protein kinase C, and receptor of glycation end products as well-advanced glycation end products. According to the metabolomics analysis, the contents and energy metabolites, and medium and long chain fatty acids was significantly changed in mice pancreases. CONCLUSIONS: JST is a valuable prescription for treatment of patients with DM in traditional clinics through inhibition of obesity, inflammatory condition and metabolism.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Farmacología en Red , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Fitoterapia , Animales , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...