Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 458: 140187, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38950510

RESUMEN

We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.

2.
Materials (Basel) ; 17(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39063686

RESUMEN

Ultra-high temperature ceramics (UHTCs) have been widely applied in many fields. In order to enhance the comprehensive properties of TaB2-based UHTCs, the first collaborative use of fine TaC particles and dispersed multi-walled carbon nanotubes (MWCNTs) was employed via spark plasma sintering (SPS) at 1700 °C. The derived UHTCs exhibited an average grain size of 1.3 µm, a relative density of 98.6%, an elastic modulus of 386.3 GPa, and a nano hardness of 21.7 GPa, leading to a greatly improved oxidation resistance with a lower linear ablation rate at -3.3 × 10-2 µm/s, and a markedly reinforced ablation resistance with mass ablation rate of -1.3 × 10-3 mg/(s·cm2). The enhanced ablation resistance was attributable to the physical pinning effect, sealing effect and self-healing effect. Thus, this study provides a potential strategy for preparation of UHTCs with bettered ablation resistance and physical properties.

3.
Biomolecules ; 14(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38927115

RESUMEN

Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.


Asunto(s)
Ingeniería Metabólica , Resveratrol , Sacarosa , Yarrowia , Resveratrol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ingeniería Metabólica/métodos , Sacarosa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Vitis/microbiología , Vitis/genética , Vitis/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Malonil Coenzima A/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Rhodotorula/genética , Rhodotorula/metabolismo , Fermentación , Arabidopsis/genética , Arabidopsis/metabolismo , Amoníaco-Liasas , Proteínas Bacterianas
4.
J Hazard Mater ; 476: 134954, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936184

RESUMEN

With the increasing demand for heavy metals due to the advancement of industrial activities, large proportions of heavy metals have been discharged into aquatic ecosystems, causing serious harm to human health and the environment. Existing physical and chemical methods for recovering heavy metals from wastewater encounter challenges, such as low efficiency, high processing costs, and potential secondary pollution. In this study, we developed a novel approach by engineering the endogenous sulphur metabolic pathway of Yarrowia lipolytica, providing it with the ability to produce approximately 550 ppm of sulphide. Subsequently, sulphide-producing Y. lipolytica was used for the first time in heavy metal remediation. The engineered strain exhibited a high capacity to remove various heavy metals, especially achieving over 90 % for cadmium (Cd), copper (Cu) and lead (Pb). This capacity was consistent when applied to both synthetic and actual wastewater samples. Microscopic analyses revealed that sulphide-mediated biological precipitation of metal sulphides on the cell surface is responsible for their removal. Our findings demonstrate that sulphide-producing yeasts are a robust and effective bioremediation strategy for heavy metals, showing great potential for future heavy metal pollution remediation practices.


Asunto(s)
Biodegradación Ambiental , Ingeniería Metabólica , Metales Pesados , Aguas Residuales , Contaminantes Químicos del Agua , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Metales Pesados/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Sulfuros/metabolismo , Sulfuros/química
5.
Bioinformatics ; 40(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38897656

RESUMEN

MOTIVATION: Predicting protein-ligand binding affinity is crucial in new drug discovery and development. However, most existing models rely on acquiring 3D structures of elusive proteins. Combining amino acid sequences with ligand sequences and better highlighting active sites are also significant challenges. RESULTS: We propose an innovative neural network model called DEAttentionDTA, based on dynamic word embeddings and a self-attention mechanism, for predicting protein-ligand binding affinity. DEAttentionDTA takes the 1D sequence information of proteins as input, including the global sequence features of amino acids, local features of the active pocket site, and linear representation information of the ligand molecule in the SMILE format. These three linear sequences are fed into a dynamic word-embedding layer based on a 1D convolutional neural network for embedding encoding and are correlated through a self-attention mechanism. The output affinity prediction values are generated using a linear layer. We compared DEAttentionDTA with various mainstream tools and achieved significantly superior results on the same dataset. We then assessed the performance of this model in the p38 protein family. AVAILABILITY AND IMPLEMENTATION: The resource codes are available at https://github.com/whatamazing1/DEAttentionDTA.


Asunto(s)
Redes Neurales de la Computación , Unión Proteica , Proteínas , Ligandos , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Programas Informáticos , Sitios de Unión , Biología Computacional/métodos , Bases de Datos de Proteínas
6.
ACS Appl Bio Mater ; 7(7): 4573-4579, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38926913

RESUMEN

There is an emerging strong demand for smart environmentally responsive protein-based biomaterials with improved adhesion properties, especially underwater adhesion for potential environmental and medical applications. Based on the fusion of elastin-like polypeptides (ELPs), SpyCatcher and SpyTag modules, biosynthetic barnacle-derived protein was genetically engineered and self-assembled with an enhanced adhesion ability and temperature response. The water resistance ability of the synthetic protein biopolymer with a network structure increased to 98.8 from 58.5% of the original Cp19k, and the nonaqueous adhesion strength enhanced to 1.26 from 0.68 MPa of Cp19k. The biopolymer showed an improved adhesion ability toward hydrophilic and hydrophobic surfaces as well as diatomite powders. The combination of functional module ELPs and SpyTag/SpyCatcher could endow the biosynthetic protein with temperature response, an insoluble form above 42 °C and a soluble form at 4 °C. The combinational advantages including temperature response and adhesion performance make the self-assembled protein an excellent candidate in surgical adhesion, underwater repair, and surface modification of various coatings. Distinct from the traditional approach of utilizing solely ELPs, the integration of short ELPs with Spy partners exhibited a synergistic enhancement in the temperature response. The synergistic effects of two functional modules provide a technical method and insight for designing smart self-assembled protein-based biopolymers.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Temperatura , Thoracica , Materiales Biocompatibles/química , Animales , Propiedades de Superficie , Tamaño de la Partícula , Elastina/química , Interacciones Hidrofóbicas e Hidrofílicas
7.
J Agric Food Chem ; 72(11): 5867-5877, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446418

RESUMEN

De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.


Asunto(s)
Ácidos Cumáricos , Polisacáridos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Ingeniería Metabólica , Celulosa/metabolismo , Carbono/metabolismo
8.
Biotechnol Biofuels Bioprod ; 17(1): 33, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402206

RESUMEN

BACKGROUND: Biodiesel, an emerging sustainable and renewable clean energy, has garnered considerable attention as an alternative to fossil fuels. Although lipases are promising catalysts for biodiesel production, their efficiency in industrial-scale application still requires improvement. RESULTS: In this study, a novel strategy for multi-site mutagenesis in the binding pocket was developed via FuncLib (for mutant enzyme design) and Rosetta Cartesian_ddg (for free energy calculation) to improve the reaction rate and yield of lipase-catalyzed biodiesel production. Thermomyces lanuginosus lipase (TLL) with high activity and thermostability was obtained using the Pichia pastoris expression system. The specific activities of the mutants M11 and M21 (each with 5 and 4 mutations) were 1.50- and 3.10-fold higher, respectively, than those of the wild-type (wt-TLL). Their corresponding melting temperature profiles increased by 10.53 and 6.01 °C, [Formula: see text] (the temperature at which the activity is reduced to 50% after 15 min incubation) increased from 60.88 to 68.46 °C and 66.30 °C, and the optimum temperatures shifted from 45 to 50 °C. After incubation in 60% methanol for 1 h, the mutants M11 and M21 retained more than 60% activity, and 45% higher activity than that of wt-TLL. Molecular dynamics simulations indicated that the increase in thermostability could be explained by reduced atomic fluctuation, and the improved catalytic properties were attributed to a reduced binding free energy and newly formed hydrophobic interaction. Yields of biodiesel production catalyzed by mutants M11 and M21 for 48 h at an elevated temperature (50 °C) were 94.03% and 98.56%, respectively, markedly higher than that of the wt-TLL (88.56%) at its optimal temperature (45 °C) by transesterification of soybean oil. CONCLUSIONS: An integrating strategy was first adopted to realize the co-evolution of catalytic efficiency and thermostability of lipase. Two promising mutants M11 and M21 with excellent properties exhibited great potential for practical applications for in biodiesel production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA