Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934394

RESUMEN

ABSTRACT: Studies have shown that chitosan protects against neurodegenerative diseases. However, the precise mechanism remains poorly understood. In this study, we administered chitosan intragastrically to an MPTP-induced mouse model of Parkinson's disease and found that it effectively reduced dopamine neuron injury, neurotransmitter dopamine release, and motor symptoms. These neuroprotective effects of chitosan were related to bacterial metabolites, specifically short-chain fatty acids, and chitosan administration altered intestinal microbial diversity and decreased short-chain fatty acid production in the gut. Furthermore, chitosan effectively reduced damage to the intestinal barrier and the blood-brain barrier. Finally, we demonstrated that chitosan improved intestinal barrier function and alleviated inflammation in both the peripheral nervous system and the central nervous system by reducing acetate levels. Based on these findings, we suggest a molecular mechanism by which chitosan decreases inflammation through reducing acetate levels and repairing the intestinal and blood-brain barriers, thereby alleviating symptoms of Parkinson's disease.

2.
Can Respir J ; 2024: 5554886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584671

RESUMEN

Objective: To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods: First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor ß, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results: APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.


Asunto(s)
Ferroptosis , Panax notoginseng , Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/tratamiento farmacológico , Ciclooxigenasa 2 , Colágeno , Receptores ErbB
3.
Nanoscale Horiz ; 9(4): 646-655, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38426307

RESUMEN

The superhard ReB2 system is the hardest pure phase diboride synthesized to date. Previously, we have demonstrated the synthesis of nano-ReB2 and the use of this nanostructured material for texture analysis using high-pressure radial diffraction. Here, we investigate the size dependence of hardness in the nano-ReB2 system using nanocrystalline ReB2 with a range of grain sizes (20-60 nm). Using high-pressure X-ray diffraction, we characterize the mechanical properties of these materials, including bulk modulus, lattice strain, yield strength, and texture. In agreement with the Hall-Petch effect, the yield strength increases with decreasing size, with the 20 nm ReB2 exhibiting a significantly higher yield strength than any of the larger grained materials or bulk ReB2. Texture analysis on the high pressure diffraction data shows a maximum along the [0001] direction, which indicates that plastic deformation is primarily controlled by the basal slip system. At the highest pressure (55 GPa), the 20 nm ReB2 shows suppression of other slip systems observed in larger ReB2 samples, in agreement with its high yield strength. This behavior, likely arises from an increased grain boundary concentration in the smaller nanoparticles. Overall, these results highlight that even superhard materials can be made more mechanically robust using nanoscale grain size effects.

4.
J Drug Target ; 32(4): 423-432, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38315456

RESUMEN

Parkinson's disease (PD) is a central nervous system disease with the highest disability and mortality rate worldwide, and it is caused by a variety of factors. The most common medications for PD have side effects with limited therapeutic outcomes. Many studies have reported that chitosan oligosaccharide (COS) crossed blood-brain barrier to achieve a neuroprotective effect in PD. However, the role of COS in PD remains unclear. The present study demonstrated that COS increased dopaminergic neurons in the substantia nigra (SN) and ameliorated dyskinesia in a PD mouse model. Moreover, COS reduced gut microbial diversity and faecal short-chain fatty acids. Valeric acid supplementation enhanced the inflammatory response in the colon and SN, and it reversed COS - suppressed dopamine neurons damage. Autophagy was involved in COS modulating inflammation through valeric acid. These results suggest that COS reduces bacterial metabolites - valeric acid, which diminishes inflammation via activating autophagy, ultimately alleviating PD.


Asunto(s)
Quitosano , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ácidos Pentanoicos , Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Quitosano/farmacología , Fármacos Neuroprotectores/farmacología , Autofagia , Inflamación/tratamiento farmacológico , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
5.
Br J Pharmacol ; 181(5): 681-697, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37653584

RESUMEN

BACKGROUND AND PURPOSE: Disruption of intestinal barriers plays a vital role in the pathogenesis of colitis. The aryl hydrocarbon receptor (AhR) is a recognition sensor that mediates intestinal immune homeostasis and minimizes intestinal inflammation. Astragalus polysaccharide (APS) exerts pharmacological actions in colitis; however, the mechanism has not been elucidated. We investigated whether APS protects through AhR-dependent autophagy. EXPERIMENTAL APPROACH: The symptoms of dextran sulfate sodium (DSS)-induced colitis in mice involving intestinal barrier function and inflammatory injury were evaluated after APS administration. Intestinal-specific Becn1 conditional knockout (Becn1 cKO) mice were constructed and compared with wild-type mice. Autophagy and the effects of APS were investigated after the deactivation of AhRs. The relationship between APS-induced AhRs and autophagic Becn1 was investigated using a dual-luciferase reporter system and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction assay. Caco-2 cells were used to investigate inflammatory responses and AhR-dependent autophagy. KEY RESULTS: APS improved intestinal barrier function in inflammatory injury in colitis mice. APS triggered autophagic flow; however, knockout of Becn1 in the gut increased susceptibility to colitis, leading to diminished epithelial barrier function and severe intestinal inflammation, impairing the protective effects of APS. Mechanistically, APS-triggered autophagy depends on AhR expression. Activated AhR binds to the promoter Becn1 to operate transcription of genes involved in anti-inflammation and intestinal barrier repair, while deactivation of AhR correlated with intestinal inflammation and the therapeutic function of APS. CONCLUSIONS AND IMPLICATIONS: APS protects colitis mice by targeting autophagy, especially as the AhR stimulates the repair of damaged intestinal barrier functions.


Asunto(s)
Colitis , Receptores de Hidrocarburo de Aril , Animales , Humanos , Ratones , Autofagia , Células CACO-2 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/prevención & control , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación , Ratones Endogámicos C57BL , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Receptores de Hidrocarburo de Aril/genética
6.
J Cell Mol Med ; 27(22): 3614-3627, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37668106

RESUMEN

Parkinson's disease (PD) is a challenge because of the ageing of the population and the disease's complicated pathogenesis. Accumulating evidence showed that iron and autophagy were involved in PD. Nevertheless, the molecular mechanism and role of iron and autophagy in PD are not yet elucidated. In the present study, it was shown that PD mice had significant motor dysfunction, increased iron content, less dopamine neurons and more α-synuclein accumulation in the substantia nigra. Meanwhile, PD mice treated with deferoxamine exhibited less iron content, relieved the dyskinesia and had a significant increase in dopamine neurons and a significant decrease in α-synuclein. Autophagy induced by LC3 was inhibited in PD models with iron treatment. Following verification showed that iron aggregation restrained insulin-like growth factor 2 (IGF2) and transcription factor zinc finger protein 27 (ZFP27) in PD models. In addition, LC3-induced autophagy flux was reduced with ZFP27 knockdown. Furthermore, ZFP27 affected autophagy by regulating LC3 promoter activity. These data suggest that iron deposition inhibits IGF2 and ZFP27 to reduce LC3-induced autophagy, and ultimately decrease dopamine neurons, accelerating PD progression. Our findings provide a novel insight that ZFP27-mediated iron-related autophagy and IGF2 may activate the downstream kinase gene to trigger autophagy in the PD model.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Hierro/metabolismo , Factores de Transcripción/metabolismo , Autofagia/genética , Neuronas Dopaminérgicas/metabolismo
7.
Cell Host Microbe ; 31(7): 1126-1139.e6, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37329880

RESUMEN

Longitudinal microbiome data provide valuable insight into disease states and clinical responses, but they are challenging to mine and view collectively. To address these limitations, we present TaxUMAP, a taxonomically informed visualization for displaying microbiome states in large clinical microbiome datasets. We used TaxUMAP to chart a microbiome atlas of 1,870 patients with cancer during therapy-induced perturbations. Bacterial density and diversity were positively associated, but the trend was reversed in liquid stool. Low-diversity states (dominations) remained stable after antibiotic treatment, and diverse communities had a broader range of antimicrobial resistance genes than dominations. When examining microbiome states associated with risk for bacteremia, TaxUMAP revealed that certain Klebsiella species were associated with lower risk for bacteremia localize in a region of the atlas that is depleted in high-risk enterobacteria. This indicated a competitive interaction that was validated experimentally. Thus, TaxUMAP can chart comprehensive longitudinal microbiome datasets, enabling insights into microbiome effects on human health.


Asunto(s)
Bacteriemia , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética
8.
Enzyme Microb Technol ; 166: 110226, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36913860

RESUMEN

Gastrodin, the major effective ingredient in Tianma (Gastrodia elata), is a p-hydroxybenzoic acid derivative with various activities. Gastrodin has been widely investigated for food and medical applications. The last biosynthetic step for gastrodin is UDP-glycosyltransferase (UGT)-mediated glycosylation with UDP-glucose (UDPG) as glycosyl donor. In this study, we performed a one-pot reaction both in vitro and in vivo to synthesize gastrodin from p-hydroxybenzyl alcohol (pHBA) by coupling UDP-glucosyltransferase from Indigofera tinctoria (itUGT2) to sucrose synthase from Glycine max (GmSuSy) for regeneration of UDPG. The in vitro results showed that itUGT2 transferred a glucosyl group to pHBA to generate gastrodin. After 37 UDPG regeneration cycles with 2.5% (molar ratio) UDP, the pHBA conversion reached 93% at 8 h. Furthermore, a recombinant strain with itUGT2 and GmSuSy genes was constructed. Through optimizing the incubation conditions, a 95% pHBA conversion rate (220 mg/L gastrodin titer) was achieved in vivo without addition of UDPG, which was 2.6-fold higher than that without GmSuSy. This in situ system for gastrodin biosynthesis provides a highly efficient strategy for both in vitro gastrodin synthesis and in vivo biosynthesis of gastrodin in E. coli with UDPG regeneration.


Asunto(s)
Glicosiltransferasas , Uridina Difosfato Glucosa , Glicosiltransferasas/genética , Escherichia coli/genética , Glucosa
9.
Int J Biol Macromol ; 232: 123366, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693609

RESUMEN

Polyhydroxyalkanoates (PHAs) as biodegradable plastics have attracted increasing attention due to its biodegradable, biocompatible and renewable advantages. Exploitation some unique microbes for PHAs production is one of the most competitive approaches to meet complex industrial demand, and further develop next-generation industrial biotechnology. In this study, a rare actinomycetes strain A7-Y was isolated and identified from soil as the first PHAs producer of Aquabacterium genus. Produced PHAs by strain A7-Y was identified as poly(3-hydroxybutyrate) (PHB) based on its structure characteristics, which is also similar with commercial PHB. After optimization of fermentation conditions, strain A7-Y can produce 10.2 g/L of PHB in 5 L fed-batch fermenter, corresponding with 54 % PHB content of dry cell weight, which is superior to the reported actinomycetes species. Furthermore, the phaCAB operon in stain A7-Y was excavated to be responsible for the efficient PHB production and verified in recombinant Escherichia coli. Our results indicate that strain A7-Y and its biosynthetic gene cluster are potential candidates for developing a microbial formulation for the PHB production.


Asunto(s)
Actinobacteria , Polihidroxialcanoatos , Poliésteres/química , Actinomyces , Actinobacteria/genética , Hidroxibutiratos
10.
Elife ; 112022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409069

RESUMEN

Microbes have disproportionate impacts on the macroscopic world. This is in part due to their ability to grow to large populations that collectively secrete massive amounts of secondary metabolites and alter their environment. Yet, the conditions favoring secondary metabolism despite the potential costs for primary metabolism remain unclear. Here we investigated the biosurfactants that the bacterium Pseudomonas aeruginosa makes and secretes to decrease the surface tension of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and mathematical modeling we show that the ability to make surfactants from glycerol varies inconsistently across the phylogenetic tree; instead, lineages that lost this ability are also worse at reducing the oxidative stress of primary metabolism on glycerol. Experiments with different carbon sources support a link with oxidative stress that explains the inconsistent distribution across the P. aeruginosa phylogeny and suggests a general principle: P. aeruginosa lineages produce surfactants if they can reduce the oxidative stress produced by primary metabolism and have excess resources, beyond their primary needs, to afford secondary metabolism. These results add a new layer to the regulation of a secondary metabolite unessential for primary metabolism but important to change physical properties of the environments surrounding bacterial populations.


Asunto(s)
Carbono , Glicerol , Metabolismo Secundario , Filogenia , Transporte Biológico , Pseudomonas aeruginosa/genética
11.
Front Aging Neurosci ; 14: 917629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860666

RESUMEN

Neurodegenerative diseases (NDs) are characterized by progressive degeneration and necrosis of neurons, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease and others. There are no existing therapies that correct the progression of these diseases, and current therapies provide merely symptomatic relief. The use of polysaccharides has received significant attention due to extensive biological activities and application prospects. Previous studies suggest that the polysaccharides as a candidate participate in neuronal protection and protect against NDs. In this review, we demonstrate that various polysaccharides mediate NDs, and share several common mechanisms characterized by autophagy, apoptosis, neuroinflammation, oxidative stress, mitochondrial dysfunction in PD and AD. Furthermore, this review reveals potential role of polysaccharides in vitro and in vivo models of NDs, and highlights the contributions of polysaccharides and prospects of their mechanism studies for the treatment of NDs. Finally, we suggest some remaining questions for the field and areas for new development.

12.
Sci Data ; 9(1): 219, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585088

RESUMEN

Hospitalized patients receiving hematopoietic cell transplants provide a unique opportunity to study the human gut microbiome. We previously compiled a large-scale longitudinal dataset of fecal microbiota and associated metadata, but we had limited that analysis to taxonomic composition of bacteria from 16S rRNA gene sequencing. Here we augment those data with shotgun metagenomics. The compilation amounts to a nested subset of 395 samples compiled from different studies at Memorial Sloan Kettering. Shotgun metagenomics describes the microbiome at the functional level, particularly in antimicrobial resistances and virulence factors. We provide accession numbers that link each sample to the paired-end sequencing files deposited in a public repository, which can be directly accessed by the online services of PATRIC to be analyzed without the users having to download or transfer the files. Then, we show how shotgun sequencing enables the assembly of genomes from metagenomic data. The new data, combined with the metadata published previously, enables new functional studies of the microbiomes of patients with cancer receiving bone marrow transplantation.


Asunto(s)
Heces , Trasplante de Células Madre Hematopoyéticas , Microbiota , Heces/microbiología , Humanos , Metagenómica , Microbiota/genética , ARN Ribosómico 16S/genética
13.
Biomed Pharmacother ; 154: 113603, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36942596

RESUMEN

Pulmonary fibrosis is an abnormal wound-healing response to repeated alveolar injury, characterized by continuous inflammation and abnormal collagen deposition. Its treatment is problematic. Astragaloside (AST) is an active component of Astragalus membranaceus with anti-inflammatory and anti-tumor properties. Although the underlying mechanisms are unknown, AST is also used to treat fibrotic diseases. This study aimed to investigate the mechanisms of action of AST in pulmonary fibrosis treatment. We found that AST significantly improved restrictive ventilatory impairment, compliance, total lung capacity, and functional residual capacity. In mice with pulmonary fibrosis, extracellular matrix deposition in the pulmonary parenchyma and intemperate inflammation were reversed. This therapeutic effect can be attributed to autophagy, activating the genes for autophagy flux and autophagic vacuoles. Impaired autophagy increased susceptibility to pulmonary fibrosis by exacerbating collagen deposition in vitro and in vivo. Using a combination of molecular docking and network pharmacology, the Ras/Raf/MEK/ERK signaling pathway was identified as a possible candidate for the pharmacologic target of AST. Functional dephosphorylation of MEK and ERK inhibited the Ras/Raf/MEK/ERK signaling pathway, which converges at the rapamycin switch to initiate autophagy. Inhibitors of Ras and MEK regulated autophagy. These findings suggest that AST might treat pulmonary fibrosis by modulating the Ras/Raf/MEK/ERK signaling pathway mediated by depression.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Autofagia , Inflamación , Colágeno/metabolismo
14.
J Vis Exp ; (177)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34866629

RESUMEN

The mechanical strengthening of metals is the long-standing challenge and popular topic of materials science in industries and academia. The size dependence of the strength of the nanometals has been attracting a lot of interest. However, characterizing the strength of materials at the lower nanometer scale has been a big challenge because the traditional techniques become no longer effective and reliable, such as nano-indentation, micropillar compression, tensile, etc. The current protocol employs radial diamond-anvil cell (rDAC) X-ray diffraction (XRD) techniques to track differential stress changes and determine the strength of ultrafine metals. It is found that ultrafine nickel particles have more significant yield strength than coarser particles, and the size strengthening of nickel continues down to 3 nm. This vital finding immensely depends on effective and reliable characterizing techniques. The rDAC XRD method is expected to play a significant role in studying and exploring nanomaterial mechanics.


Asunto(s)
Metales , Nanoestructuras , Diamante , Níquel , Difracción de Rayos X
15.
Mol Med Rep ; 24(4)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34414447

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle­aged and elderly populations. Several studies have confirmed that the microbiota­gut­brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α­synuclein (α­syn) in the intestine. Abnormal α­syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α­syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α­syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α­syn in the intestine caused by the GM changes and the increased levels of α­syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α­syn accumulation to relieve the symptoms and progression of PD are described.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Progresión de la Enfermedad , Microbioma Gastrointestinal/fisiología , Enfermedad de Parkinson/microbiología , alfa-Sinucleína/metabolismo , Anciano , Bacterias/clasificación , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Disbiosis , Humanos , Microglía , Persona de Mediana Edad , Enfermedades Neurodegenerativas , Estrés Oxidativo , alfa-Sinucleína/genética
16.
Int Immunopharmacol ; 96: 107758, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34162137

RESUMEN

Atherosclsis is a critical actuator causing cardiac-cerebral vascular disease with a complicated pathogeneon, refered to the disorders of intestinal flora and persistent inflammation. Gastrodin (4-(hydroxymethyl) phenyl-ß-D- Glucopyranoside) is the most abundant glucoside extracted from the Gastrodiaelata, which is a traditional Chinese herbal medicine for cardiac-cerebral vascular disease, yet its mechanisms remain little known. In the present study, the gastrodia extract and gastrodin attenuate the lipid deposition and foam cells on the inner membrane of the inner membrane of the thoracic aorta in the early atherosclerosis mice. Blood lipid detection tips that TC and LDL-C were reduced in peripheral blood after treatment with the gastrodia extract and gastrodin. Furthermore, unordered gut microbes are remodeled in terms of bacterial diversity and abundance at family and genus level. Also, the intestinal mucosa damage and permeability were reversed, accompaniedwith the reducing of inflammatory cytokines. Our findings revealed that the functions of gastrodia extract and gastrodin in cardiac-cerebral vascular disease involved to rescued gut microbes and anti-inflammation may be the mechanismof remission lipid accumulation.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Gastrodia/química , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Ácido Acético/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Aterosclerosis/microbiología , Aterosclerosis/patología , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/uso terapéutico , Ácido Butírico/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/genética , Glucósidos/farmacología , Glucósidos/uso terapéutico , Inflamación/microbiología , Molécula 1 de Adhesión Intercelular/sangre , Interleucina-1beta/sangre , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Lípidos/sangre , Ratones Endogámicos C57BL , Propionatos/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Factor de Necrosis Tumoral alfa/sangre
17.
J Nanosci Nanotechnol ; 21(5): 3134-3147, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653489

RESUMEN

A large amount of vinegar residue (VR) is generated every year in China, causing serious environmental pollutions. Meanwhile, as a kind of persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) ubiquitously exist in environments. With a goal of reusing VR and reducing PAHs pollutions, we herein isolated one B. subtilis strain, ZL09-26, which can degrade phenanthrene and produce biosurfactants. Subsequently, raw VR was dried under different temperatures (50 °C, 80 °C, 100 °C and 120 °C) or pyrolyzed under 350 °C and 700 °C, respectively. After being characterized by various approaches, the treated VR were mixed with ZL09-26 as carriers to degrade phenanthrene. We found that VR dried at 50 °C (VR50) was the best in promoting the growth of ZL09-26 and the degradation of phenanthrene. This result may be attributed to the residual nutrients, suitable porosity and small surface charge of VR50. Our results demonstrate the potential of VR in the biodegradation of phenanthrene, which may be meaningful for developing new VR-based approaches to remove PAHs in aqueous environments.

18.
Biomed Pharmacother ; 137: 111271, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33561643

RESUMEN

Cigarette smoking-related lung injury is one of the most common and fatal etiologies of many respiratory diseases, for which no effective interventions are available. Astragaloside Ⅳ (ASⅣ) is an active component extracted from Astragalus membranaceus. It is prescribed as a treatment for upper respiratory tract infections. Here, we report the potential anti-inflammatory effects and mechanisms of ASⅣ on cigarette smoking extract- (CSE)-exposed RAW264.7 cells. Murine macrophages were exposed to CSE, followed by administration of ASⅣ at 25-100 µg/mL for 24 h. ASⅣ significantly rescued CSE-induced cell death by inhibition of release pro-inflammatory cytokines. We measured autophagy as an intracellular scavenger by analyzing autophagic flux using tandem mRFP-GFP-LC3 fluorescence microscopy. Following administration with ASⅣ in CSE-exposed RAW264.7 cells, there was a notable increase in autophagosomes and a range of autophagic vacuoles were generated, as seen with transmission electron microscopy. Loss of autophagy following transfection siRNA aggravated inflammatory injury and release of inflammatory cytokines. Mechanistically, ASⅣ-triggered autophagy is mediated by the TLR4/NF-κB signaling pathway to reduce inflammation. Taken together, our findings suggest that ASⅣ acts stimulates autophagy, and that ASⅣ induces autophagy by inhibiting the TLR4/NF-κB signaling pathway, contributing to alleviation of inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Saponinas/farmacología , Receptor Toll-Like 4/metabolismo , Triterpenos/farmacología , Animales , Citocinas/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Fosforilación , Células RAW 264.7 , Transducción de Señal
20.
Entropy (Basel) ; 22(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33286490

RESUMEN

In this work, the formation of carbide with the concertation of carbon at 0.1 at.% in refractory high-entropy alloy (RHEA) Mo15Nb20Re15Ta30W20 was studied under both ambient and high-pressure high-temperature conditions. The x-ray diffraction of dilute carbon (C)-doped RHEA under ambient pressure showed that the phases and lattice constant of RHEA were not influenced by the addition of 0.1 at.% C. In contrast, C-doped RHEA showed unexpected phase formation and transformation under combined high-pressure and high-temperature conditions by resistively employing the heated diamond anvil cell (DAC) technique. The new FCC_L12 phase appeared at 6 GPa and 809 °C and preserved the ambient temperature and pressure. High-pressure and high-temperature promoted the formation of carbides Ta3C and Nb3C, which are stable and may further improve the mechanical performance of the dilute C-doped alloy Mo15Nb20Re15Ta30W20.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...