Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 18(10): 1139-1146, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37488220

RESUMEN

Coherently driven semiconductor quantum dots are one of the most promising platforms for non-classical light sources and quantum logic gates which form the foundation of photonic quantum technologies. However, to date, coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states. Ultrafast coherent control of high-orbital states is obstructed by the demand for tunable terahertz pulses. To break this constraint, we demonstrate an all-optical method to control high-orbital states of a hole via a stimulated Auger process. The coherent nature of the Auger process is proved by Rabi oscillation and Ramsey interference. Harnessing this coherence further enables the investigation of the single-hole relaxation mechanism. A hole relaxation time of 161 ps is observed and attributed to the phonon bottleneck effect. Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters and for developing new types of orbital-based quantum photonic devices.

2.
Opt Express ; 30(7): 10229-10238, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35472995

RESUMEN

Photonic crystal lasers with a high-Q factor and small mode volume are ideal light sources for on-chip nano-photonic integration. Due to the submicron size of their active region, it is usually difficult to achieve high output power and single-mode lasing at the same time. In this work, we demonstrate well-selected single-mode lasing in a line-defect photonic crystal cavity by coupling it to the high-Q modes of a short double-heterostructure photonic crystal cavity. One of the FP-like modes of the line-defect cavity can be selected to lase by thermo-optically tuning the high-Q mode of the short cavity into resonance. Six FP-like modes are successively tuned into lasing with side mode suppression ratios all exceeding 15 dB. Furthermore, we show a continuous wavelength tunability of about 10 nm from all the selected modes. The coupled cavity system provides a remarkable platform to explore the rich laser physics through the spatial modulation of vacuum electromagnetic field at submicron scale.

3.
Nano Lett ; 22(4): 1483-1490, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35148112

RESUMEN

Single-photon sources play a key role in photonic quantum technologies. Semiconductor quantum dots can emit indistinguishable single photons under resonant excitation. However, the resonance fluorescence technique typically requires cross-polarization filtering, which causes a loss of the unpolarized quantum dot emission by 50%. To solve this problem, we demonstrate a method for generating indistinguishable single photons with optically controlled polarization by two laser pulses off-resonant with neutral exciton states. This scheme is realized by exciting the quantum dot to the biexciton state and subsequently driving the quantum dot to an exciton eigenstate. By combining with a magnetic field, we demonstrated the generation of photons with optically controlled polarization (the degree of polarization is 101(2)%), laser-neutral exciton detuning up to 0.81 meV, high single-photon purity (99.6(1)%), and indistinguishability (85(4)%). Laser pulses can be blocked using polarization and spectral filtering. Our work makes an important step toward indistinguishable single-photon sources with near-unity collection efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...