Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 348: 825-840, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35752255

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with no currently approved treatment. The natural compound silybin (SLN) has versatile hepatoprotective efficacy with negligible adverse effects; however, poor absorption limits its clinical applications. Gut microbiota has been proposed to play a crucial role in the pathophysiology of NAFLD and targeted for disease control. Cyclodextrins, the cyclic oligosaccharides, were documented to have various health benefits with potential prebiotic properties. This study aimed to develop a silybin-2-hydroxypropyl-ß-cyclodextrin inclusion (SHßCD) to improve the therapeutic efficacy of SLN and elucidate the mechanisms of improvement. The results showed that SLN formed a 1:1 stoichiometric inclusion complex with HP-ß-CD. The solubility of SLN was increased by generating SHßCD, resulting in improved drug permeability and bioavailability. In high-fat diet (HFD)-fed hamsters, SHßCD modulated gut health by restoring the gut microbiota and intestinal integrity. SHßCD showed superior anti-lipid accumulation, antioxidant, and anti-inflammatory effects compared with SLN alone. Transcriptome analysis in the liver tissue implied that the improved inflammation and/or energy homeostasis was the potential mechanism. Therefore, SHßCD may be a promising alternative for the treatment of NAFLD, attributing to the dual functions of HßCD on drug absorption and gut microbial homeostasis.


Asunto(s)
Ciclodextrinas , Enfermedad del Hígado Graso no Alcohólico , Animales , Cricetinae , Ciclodextrinas/farmacología , Dieta Alta en Grasa/efectos adversos , Homeostasis , Humanos , Hígado , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Prebióticos , Silibina
2.
Acta Pharmacol Sin ; 43(7): 1686-1698, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34811513

RESUMEN

Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study,  we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.


Asunto(s)
Metanfetamina , Animales , Cuerpo Estriado/metabolismo , Homeostasis , Hierro/metabolismo , Metanfetamina/farmacología , Ratones , Ratas , Recompensa
3.
Huan Jing Ke Xue ; 39(10): 4783-4792, 2018 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-30229628

RESUMEN

The growth and activity of sulfate-reducing prokaryotes (SRP) in oilfield environments could produce large amounts of H2S, leading to multifaceted problems, including oilfield souring and microbially-influenced corrosion, yet knowledge about the diversity and physiology of SRP therein was quite limited. To further understand the phenotypic characteristics of SRP residing in an offshore high-temperature oilfield at Bohai Bay, China, and to explore the potential methods for control of SRP-mediated problems, we isolated, using Hungate techniques, a thermotolerant, halotolerant SRP strain, designated BQ1, from the produced water of a high-temperature. We also presented the phenotypic features of BQ1, and investigated the efficacy of five biocides, or metabolic inhibitors, in suppressing the sulfidogenic activity of BQ1. Cells of BQ1 were motile, short rod-shaped, 1.2-2.5 µm in length and 0.5-0.8 µm in width. Although BQ1 shared 99% 16S rRNA gene sequence similarity with Desulfovibrio vulgaris Hildenborough, distinct phenotypic traits between them were observed. Isolated BQ1 could grow at 14-70℃(optimum at 30℃) and pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0%-10% NaCl. Isolated BQ1 utilized a wide range of carbon substrates, including sodium formate, sodium lactate, and acetate. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors, but not nitrate or nitrite. Sodium hypochlorite (600 mg·L-1), Benzyltrimethylammonium chloride (300 mg·L-1), or nitrate (800 mg·L-1) failed to inhibit H2S production by BQ1. By contrast, glutaraldehyde (50 mg·L-1), bronopol (30 mg·L-1), chlorine dioxide (50 mg·L-1), and nitrite (70 mg·L-1) inhibited H2S production by BQ1 for at least 30 d, indicating that these compounds may be suitable for the mitigation of microbial souring in this specific, high-temperature, offshore oilfield at Bohai Bay, China.


Asunto(s)
Yacimiento de Petróleo y Gas/microbiología , Filogenia , Bacterias Reductoras del Azufre/clasificación , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Bahías , China , ADN Bacteriano , Calor , Oxidación-Reducción , ARN Ribosómico 16S , Agua de Mar , Análisis de Secuencia de ADN , Sulfatos , Bacterias Reductoras del Azufre/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...