Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1403276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863531

RESUMEN

Flax powdery mildew (PM), caused by Oidium lini, is a globally distributed fungal disease of flax, and seriously impairs its yield and quality. To data, only three resistance genes and a few putative quantitative trait loci (QTL) have been reported for flax PM resistance. To dissect the resistance mechanism against PM and identify resistant genetic regions, based on four years of phenotypic datasets (2017, 2019 to 2021), a genome-wide association study (GWAS) was performed on 200 flax core accessions using 674,074 SNPs and 7 models. A total of 434 unique quantitative trait nucleotides (QTNs) associated with 331 QTL were detected. Sixty-four loci shared in at least two datasets were found to be significant in haplotype analyses, and 20 of these sites were shared by multiple models. Simultaneously, a large-effect locus (qDI 11.2) was detected repeatedly, which was present in the mapping study of flax pasmo resistance loci. Oil flax had more QTL with positive-effect or favorable alleles (PQTL) and showed higher PM resistance than fiber flax, indicating that effects of these QTL were mainly additive. Furthermore, an excellent resistant variety C120 was identified and can be used to promote planting. Based on 331 QTLs identified through GWAS and the statistical model GBLUP, a genomic selection (GS) model related to flax PM resistance was constructed, and the prediction accuracy rate was 0.96. Our results provide valuable insights into the genetic basis of resistance and contribute to the advancement of breeding programs.

2.
Environ Sci Technol ; 57(7): 2726-2738, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36746765

RESUMEN

The characterization of variations in riverine microbiota that stem from contaminant sources and transport modes is important for understanding biogeochemical processes. However, the association between complex anthropogenic nitrogen pollution and bacteria has not been extensively investigated owing to the difficulties faced while determining the distribution of nitrogen contaminants in watersheds. Here, we employed the Soil and Water Assessment Tool alongside microbiological analysis to explore microbial characteristics and their responses to complex nitrogen pollution patterns. Significant variations in microbial communities were observed in sub-basins with distinct land-water pollution transport modes. Point source-dominated areas (PSDAs) exhibited reduced microbial diversity, high number of denitrification groups, and increased nitrogen cycling compared with others. The negative relative deviations (-3.38) between the measured and simulated nitrate concentrations in PSDAs indicated that nitrate removal was more effective in PSDAs. Pollution sources were also closely associated with microbiota. Effluents from concentrated animal feeding operations were the primary factors relating to the microbiota compositions in PSDAs and balanced areas. In nonpoint source-dominated areas, contaminants from septic tanks become the most relevant sources to microbial community structures. Overall, this study expands our knowledge regarding microbial biogeochemistry in catchments and beyond by linking specific nitrogen pollution scenarios to microorganisms.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Animales , Nitrógeno/análisis , Nitratos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua , Ríos/química
3.
Genes (Basel) ; 13(3)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328040

RESUMEN

Soil salinization seriously affects the growth and distribution of flax. However, there is little information about the salt tolerance of flax. In this study, the salt tolerance of 200 diverse flax accessions during the germination stage was evaluated, and then the Genome-wide Association Study (GWAS) was carried out based on the relative germination rate (RGR), relative shoot length (RSL) and relative root length (RRL), whereby quantitative trait loci (QTLs) related to salt tolerance were identified. The results showed that oil flax had a better salt tolerance than fiber flax. A total of 902 single nucleotide polymorphisms (SNPs) were identified on 15 chromosomes. These SNPs were integrated into 64 QTLs, explaining 14.48 to 29.38% (R2) of the phenotypic variation. In addition, 268 candidate genes were screened by combining previous transcriptome data and homologous gene annotation. Among them, Lus10033213 is a single-point SNP repeat mapping gene, which encodes a Glutathione S-transferase (GST). This study is the first to use GWAS to excavate genes related to salt tolerance during the germination stage of flax. The results of this study provide important information for studying the genetic mechanism of salt tolerance of flax, and also provide the possibility to improve the salt tolerance of flax.


Asunto(s)
Lino , Estudio de Asociación del Genoma Completo , Lino/genética , Estudio de Asociación del Genoma Completo/métodos , Germinación/genética , Tolerancia a la Sal/genética , Semillas/genética
4.
Plant J ; 107(6): 1697-1710, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34228847

RESUMEN

Genomic imprinting is an epigenetic phenomenon that causes biased expression of maternally and paternally inherited alleles. In flowering plants, genomic imprinting predominantly occurs in the triploid endosperm and plays a vital role in seed development. In this study, we identified 248 candidate imprinted genes including 114 maternally expressed imprinted genes (MEGs) and 134 paternally expressed imprinted genes (PEGs) in flax (Linum usitatissimum L.) endosperm using deep RNA sequencing. These imprinted genes were neither clustered in specific chromosomal regions nor well conserved among flax and other plant species. MEGs tended to be expressed specifically in the endosperm, whereas the expression of PEGs was not tissue-specific. Imprinted single nucleotide polymorphisms differentiated 200 flax cultivars into the oil flax, oil-fiber dual purpose flax and fiber flax subgroups, suggesting that genomic imprinting contributed to intraspecific variation in flax. The nucleotide diversity of imprinted genes in the oil flax subgroup was significantly higher than that in the fiber flax subgroup, indicating that some imprinted genes underwent positive selection during flax domestication from oil flax to fiber flax. Moreover, imprinted genes that underwent positive selection were related to flax functions. Thirteen imprinted genes related to flax seed size and weight were identified using a candidate gene-based association study. Therefore, our study provides information for further exploration of the function and genomic variation of imprinted genes in the flax population.


Asunto(s)
Endospermo/genética , Lino/genética , Genes de Plantas , Impresión Genómica , Alelos , Cruzamientos Genéticos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Reproducibilidad de los Resultados , Semillas/genética , Análisis de Secuencia de ARN
5.
Front Plant Sci ; 10: 1682, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010166

RESUMEN

Seed size and weight are key traits determining crop yield, which often undergo strongly artificial selection during crop domestication. Although seed sizes differ significantly between oil flax and fiber flax, the genetic basis of morphological differences and artificial selection characteristics in seed size remains largely unclear. Here we re-sequenced 200 flax cultivated accessions to generate a genome variation map based on chromosome assembly reference genomes. We provide evidence that oil flax group is the ancestor of cultivated flax, and the oil-fiber dual purpose group (OF) is the evolutionary intermediate transition state between oil and fiber flax. Genome-wide association studies (GWAS) were combined with LD Heatmap to identify candidate regions related to seed size and weight, then candidate genes were screened based on detailed functional annotations and estimation of nucleotide polymorphism effects. Using this strategy, we obtained 13 candidate genes related to seed size and weight. Selective sweeps analysis indicates human-involved selection of small seeds during the oil to fiber flax transition. Our study shows the existence of elite alleles for seed size and weight in flax germplasm and provides molecular insights into approaches for further improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA