Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Womens Health ; 24(1): 387, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965508

RESUMEN

BACKGROUND: Observational studies have found a correlation between the levels of blood lipids and the development and progression of endometriosis (EM). However, the causality and direction of this correlation is unclear. This study aimed to examine the bidirectional connection between lipid profiles and the risk of EM using publicly available genome-wide association study (GWAS) summary statistics. METHODS: Eligible exposure variables such as levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were selected using a two-sample Mendelian randomization (MR) analysis method following a series of quality control procedures. Data on EM were obtained from the publicly available Finnish database of European patients. Inverse variance weighted (IVW), MR Egger, weighted median, and weighted mode methods were used to analyze the causal relationship between lipid exposure and EM, exclude confounders, perform sensitivity analyses, and assess the stability of the results. Reverse MR analyses were performed with EM as exposure and lipid results as study outcomes. RESULTS: IVW analysis results identified HDL as a protective factor for EM, while TG was shown to be a risk factor for EM. Subgroup analyses based on the site of the EM lesion identified HDL as a protective factor for EM of the uterus, while TG was identified a risk factor for the EM of the fallopian tube, ovary, and pelvic peritoneum. Reverse analysis did not reveal any effect of EM on the levels of lipids. CONCLUSION: Blood lipids, such as HDL and TG, may play an important role in the development and progression of EM. However, EM does not lead to dyslipidemia.


Asunto(s)
Endometriosis , Estudio de Asociación del Genoma Completo , Lípidos , Análisis de la Aleatorización Mendeliana , Triglicéridos , Humanos , Femenino , Endometriosis/sangre , Endometriosis/genética , Análisis de la Aleatorización Mendeliana/métodos , Triglicéridos/sangre , Lípidos/sangre , Factores de Riesgo , Causalidad , Finlandia/epidemiología , Colesterol/sangre
2.
Vet Microbiol ; 295: 110107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838382

RESUMEN

Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of ß-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/ß levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.


Asunto(s)
Herpesvirus Suido 1 , Interferón Tipo I , Lectinas Tipo C , Seudorrabia , beta-Glucanos , Animales , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Ratones , Porcinos , Lectinas Tipo C/inmunología , Seudorrabia/inmunología , Seudorrabia/prevención & control , Interferón Tipo I/inmunología , Herpesvirus Suido 1/inmunología , Herpesvirus Suido 1/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Antivirales/farmacología , Vacunas Virales/inmunología , Femenino
3.
ACS Nano ; 18(14): 10104-10112, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527229

RESUMEN

Protein layers formed on solid surfaces have important applications in various fields. High-resolution characterization of the morphological structures of protein forms in the process of developing protein layers has significant implications for the control of the layer's quality as well as for the evaluation of the layer's performance. However, it remains challenging to precisely characterize all possible morphological structures of protein in various forms, including individuals, networks, and layers involved in the formation of protein layers with currently available methods. Here, we report a terahertz (THz) morphological reconstruction nanoscopy (THz-MRN), which can reveal the nanoscale three-dimensional structural information on a protein sample from its THz near-field image by exploiting an extended finite dipole model for a thin sample. THz-MRN allows for both surface imaging and subsurface imaging with a vertical resolution of ∼0.5 nm, enabling the characterization of various forms of proteins at the single-molecule level. We demonstrate the imaging and morphological reconstruction of single immunoglobulin G (IgG) molecules, their networks, a monolayer, and a heterogeneous double layer comprising an IgG monolayer and a horseradish peroxidase-conjugated anti-IgG layer. The established THz-MRN presents a useful approach for the label-free and nondestructive study of the formation of protein layers.


Asunto(s)
Imágen por Terahertz , Humanos , Imágen por Terahertz/métodos , Nanotecnología , Inmunoglobulina G
4.
Small ; 20(7): e2306513, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803425

RESUMEN

With the rapid development of performance and long-term stability, bismuth vanadate (BiVO4 ) has emerged as the preferred photoanode in photoelectrochemical tandem devices. Although state-of-the-art BiVO4 photoanodes realize a saturated photocurrent density approaching the theoretical maximum, the fill factor (FF) is still inferior, pulling down the half-cell applied bias photon-to-current efficiency (HC-ABPE). Among the major fundamental limitations are the Fermi level pinning and sluggish surface kinetics at the low applied potentials. This work demonstrates that the plasma-assisted atomic layer deposition technique is capable of addressing these issues by seamlessly installing an angstrom-scale FeNi-layer between BiVO4 and electrolyte. Not only this ultrathin FeNi layer serves as an efficient OER cocatalyst, more importantly, it also effectively passivates the surface states of BiVO4 , de-pins the surface Fermi level, and enlarges the built-in voltage, allowing the photoanode to make optimal use of the photogenerated holes for achieving high FF up to 44% and HC-ABPE to 2.2%. This study offers a new approach for enhancing the FF of photoanodes and provides guidelines for designing efficient unassisted solar fuel devices.

5.
Nano Lett ; 23(24): 11785-11792, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38078823

RESUMEN

Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.

6.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686436

RESUMEN

Organelles play core roles in living beings, especially in internal cellular actions, but the hidden information inside the cell is difficult to extract in a label-free manner. In recent years, terahertz (THz) imaging has attracted much attention because of its penetration depth in nonpolar and non-metallic materials and label-free, non-invasive and non-ionizing ability to obtain the interior information of bio-samples. However, the low spatial resolution of traditional far-field THz imaging systems and the weak dielectric contrast of biological samples hinder the application of this technology in the biological field. In this paper, we used an advanced THz scattering near-field imaging method for detecting chloroplasts on gold substrate with nano-flatness combined with an image processing method to remove the background noise and successfully obtained the subcellular-grade internal reticular structure from an Arabidopsis chloroplast THz image. In contrast, little inner information could be observed in the tea chloroplast in similar THz images. Further, transmission electron microscopy (TEM) and mass spectroscopy (MS) were also used to detect structural and chemical differences inside the chloroplasts of Arabidopsis and tea plants. The preliminary results suggested that the interspecific different THz information is related to the internal spatial structures of chloroplasts and metabolite differences among species. Therefore, this method could open a new way to study the structure of individual organelles.


Asunto(s)
Arabidopsis , Cintigrafía , Microscopía de Fuerza Atómica , Cloroplastos ,
7.
Front Bioeng Biotechnol ; 11: 1119694, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873349

RESUMEN

In clinical practice, proteinuria detection is of great significance in the diagnosis of kidney diseases. Dipstick analysis is used in most outpatient settings to semi-quantitatively measure the urine protein concentration. However, this method has limitations for protein detection, and alkaline urine or hematuria will cause false positive results. Recently, terahertz time-domain spectroscopy (THz-TDS) with strong hydrogen bonding sensitivity has been proven to be able to distinguish different types of biological solutions, which means that protein molecules in urine may have different THz spectral characteristics. In this study, we performed a preliminary clinical study investigating the terahertz spectra of 20 fresh urine samples (non-proteinuria and proteinuria). The results showed that the concentration of urine protein was positively correlated with the absorption of THz spectra at 0.5-1.2 THz. At 1.0 THz, the pH values (6, 7, 8, and 9) had no significant effect on the THz absorption spectra of urine proteins. The terahertz absorption of proteins with a high molecular weight (albumin) was greater than that of proteins with a low molecular weight (ß2-microglobulin) at the same concentration. Overall, THz-TDS spectroscopy for the qualitative detection of proteinuria is not affected by pH and has the potential to discriminate between albumin and ß2-microglobulin in urine.

8.
Plant Physiol Biochem ; 194: 52-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36375327

RESUMEN

Low temperature stress, in the form of chilling and freezing, is one of the major environmental factors impacting on citrus yield, which changes plant's water state and results in the crops' sub-health or injury. The innovative terahertz (THz) spectroscopy and imaging based sensing technology has been shown to be a suitable tool for plant leaf water status determination, due to THz radiation's innate sensitivity to hydrogen bond vibration in aqueous solutions, which is usually related to plant phenotype change. We demonstrate experimentally that the THz absorption coefficient of leaf could be used for distinguishing plant's physiological stress status, exhibiting clear decreasing or increasing trend under chilling or freezing stress respectively. The underlying rationale might be that membrane damage shows a diverse pattern, changing the intra- or extra-cellular liquid environments, likely being linked to the various THz spectral characteristics. There were different adaptations in leaf morphology, leading to different leaf density, which in turn affects the water volume fraction. Moreover, different patterns of the dynamic equilibrium state of free water and bound water under chilling and freezing treatment were revealed by THz spectroscopy. Here, THz spectroscopic monitoring has shown unique potential for judging citrus's low temperature stress state through bio-water detection and discrimination.


Asunto(s)
Espectroscopía de Terahertz , Agua , Temperatura , Agua/química , Espectroscopía de Terahertz/métodos , Frío , Hojas de la Planta
9.
Nanotechnology ; 32(27)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33770782

RESUMEN

Rechargeable Zn-air batteries are a promising type of metal-air batteries for high-density energy storage. However, their practical use is limited by the use of costly noble-metal electrocatalysts for the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) occurred at the air electrode of the Zn-air batteries. This work reports a new non-precious bifunctional OER/ORR electrocatalyst of NiSx/carbon nanotubes (CNTs), which is made by atomic layer deposition (ALD) of nickel sulfide (NiSx) on CNTs, for the applications for the air electrode of the Zn-air batteries. The NiSx/CNT electrocatalyst on a carbon cloth electrode exhibits a low OER overpotential of 288 mV to reach 10 mA cm-2in current density, and the electrocatalyst on a rotating disk electrode exhibits a half-wave ORR potential of 0.81 V in alkaline electrolyte. With the use of the NiSx/CNT electrocatalyst for the air electrode, the fabricated aqueous rechargeable Zn-air batteries show a fairly good maximum output power density of 110 mW cm-2, which highlights the great promise of the ALD NiSx/CNT electrocatalyst for Zn-air batteries.

10.
J Biophotonics ; 14(1): e202000315, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32981137

RESUMEN

Terahertz absorption spectroscopy based on attenuated total reflection (ATR) from a microfluidic sample cell was designed and implemented to detect gene mutations leading to Huntington's disease (HD). The self-developed compact ATR microfluidic system was employed to detect two groups of base-repeated DNA molecules combined with a terahertz time-domain spectrometer in a marker-free manner. The first group featured different repetition patterns of oligonucleotide fragments, and the second group included the HD gene. For the oligonucleotides of different repetition patterns, there were significant differences among the three oligonucleotides with three repeats of the double bases, which could be unambiguously classified and identified; For the HD gene, it was found that the magnitude of the terahertz absorption coefficients of the four oligonucleotide solutions was, in ascending order, CAG-4 < CAG-16 < CAG-32 < CAG-40 (the numbers are the repeat times of the CAG base segment, with 40 repeats belonging to the HD gene), when the concentration of oligonucleotide was 1 mg/mL. Principal component analysis result indicated that the spectral differences of the four oligonucleotide solutions with different CAG repeat times were statistically significant and clearly distinguishable. These results demonstrate the potential of terahertz spectroscopy as a noninvasive, unmarked, fast and low-cost assay for gene diagnosis and clinical disease detection.


Asunto(s)
Enfermedad de Huntington , Espectroscopía de Terahertz , ADN , Humanos , Enfermedad de Huntington/genética , Microfluídica , Mutación
11.
Biomed Opt Express ; 11(9): 5362-5372, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33014620

RESUMEN

Many human genetic diseases are caused by single-base mutation in the gene sequence. Since DNA molecules with single-base mutation are extremely difficult to differentiate, existing detection methods are invariably complex and time-consuming. We propose a new label-free and fast terahertz (THz) spectroscopic technique based on a home-made terahertz attenuated total reflection (ATR) microfluidic cell and a terahertz time-domain spectroscopy (THz-TDS) system to detect single-base-mutated DNA molecules. The detected object DNA molecules are normal hemoglobin gene, sickle cell anemia gene (15 nt), JAK2 gene wild type and JAK2 V617F gene mutation (39 nt) from sickle cell anemia and thrombocytopenia, respectively. Results show that the oligonucleotide fragments with single-base mutation can be identified by THz spectroscopy combined with the ATR microfluidic cell, and the recognition effect of short oligonucleotide fragments with single-base mutation is better than that of long oligonucleotide fragments. The terahertz biosensor is shown to have high sensitivity and can be used to detect DNA molecules directly in the solution environment.

12.
Opt Express ; 28(17): 25293-25307, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32907053

RESUMEN

High-quality terahertz (THz) images are vital to integrated circuit (IC) manufacturing. Due to the unique sensitivity of THz waves to different materials, the images obtained from the point-spread function (PSF) model have fewer image details and less texture information in some frequency bands. This paper presents an image fusion technique to enhance the resolution of THz IC images. The source images obtained from the PSF model are processed by a fusion method combining a multiscale transform (MST) and sparse representation (SR). The low-pass band is handled by sparse representation, and the high-pass band is fused by the conventional "max-absolute" rule. From both objective and visual perspectives, four popular multiscale transforms-the Laplacian pyramid, the ratio of low-pass pyramids, the dual-tree complex wavelet transform and the curvelet transform-are thoroughly compared at different decomposition levels ranging from one to four. This work demonstrates the feasibility of using image fusion to enhance the resolution of THz IC images.

13.
Opt Express ; 28(4): 5000-5012, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121729

RESUMEN

Detection of integrated circuit (IC) defects is vital in IC manufacturing. Traditional defect detection methods have relied on scanning electron microscopy and X-ray imaging techniques that are time consuming and destructive. Hence, in this paper we considered terahertz imaging as a label-free and nondestructive alternative. This study aimed to use a convolutional neural network model (CNN) to improve the performance of the terahertz imaging IC detection system. First, we constructed a terahertz imaging IC dataset and analyzed it. Subsequently, a new CNN structure was proposed based on the VGG16 network. Finally, it was optimized based on its structure and dropout rate. The method proposed above can improve IC defects detection accuracy of THz imaging. Most significantly, this work will promote the application of terahertz imaging in practice and provide a foundation to further research in relevant fields.

14.
Cell Prolif ; 53(4): e12788, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32153074

RESUMEN

OBJECTIVES: Terahertz (THz)-based imaging techniques hold great potential for biological and biomedical applications, which nevertheless are hampered by the low spatial resolution of conventional THz imaging systems. In this work, we report a high-performance photoconductive antenna microprobe-based near-field THz time-domain spectroscopy scanning microscope. MATERIALS AND METHODS: A single watermelon pulp cell was prepared on a clean quartz slide and covered by a thin polyethylene film. The high performance near-field THz microscope was developed based on a coherent THz time-domain spectroscopy system coupled with a photoconductive antenna microprobe. The sample was imaged in transmission mode. RESULTS: We demonstrate the direct imaging of the morphology of single watermelon pulp cells in the natural dehydration process with our near-field THz microscope. CONCLUSIONS: Given the label-free and non-destructive nature of THz detection techniques, our near-field microscopy-based single-cell imaging approach sheds new light on studying biological samples with THz.


Asunto(s)
Microscopía de Sonda de Barrido/instrumentación , Análisis de la Célula Individual/instrumentación , Imágen por Terahertz/instrumentación , Citrullus/citología , Desecación , Diseño de Equipo , Humanos
15.
J Theor Biol ; 488: 110119, 2020 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-31866396

RESUMEN

This study formulates a stochastic nutrient-phytoplankton model which incorporates the effect of white noise on phytoplankton growth. The global existence and uniqueness of a positive solution, stochastic boundedness, and stochastically asymptotic stability are well explored. A stochastic ecological reproductive index R0s is formulated to characterize the global dynamics. The theoretical analysis demonstrates that, if R0s<1, then phytoplankton dies out with probability one; if R0s>1 and some other conditions hold, then there exists an invariant and asymptotically stable density of the system and the approach involves integral Markov semigroups theory. Numerical simulations are presented to illustrate the analytical findings and to investigate the long-time effect of water temperature, light, nutrients, and environmental noise on the dynamic evolution of phytoplankton.


Asunto(s)
Nutrientes , Fitoplancton , Probabilidad , Temperatura , Agua
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117736, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-31753643

RESUMEN

A rapid method for detecting fatty acids (FAs) using terahertz time-domain spectroscopy (THz-TDS) technology combined with a metamaterial-based THz sensor was developed. We measured the THz responses to oleic acid, linoleic acid and α-linoleic acid with different numbers of double-bond, α-linoleic acid and γ-linoleic acid with different conformations. In addition, in order to explore the reason for the observed redshifts of the resonance frequencies of the four FAs, the dielectric constants of the FAs were measured in the THz region. Furthermore, the four fatty acids were also attempted to be identified by Raman spectroscopy, which was difficult to accomplish unambiguously because of the effect of fluorescence. This result thus demonstrates the power and usefulness of metamaterial-assisted THz-TDS in the rapid determination of the FAs, and its potential as a versatile tool for investigation of biological metabolism, and for food product quality, safety inspection and control.


Asunto(s)
Técnicas Biosensibles/instrumentación , Ácidos Grasos/análisis , Espectroscopía de Terahertz/instrumentación , Técnicas Biosensibles/economía , Diseño de Equipo , Análisis de Elementos Finitos , Análisis de los Alimentos/economía , Análisis de los Alimentos/instrumentación , Espectroscopía de Terahertz/economía , Factores de Tiempo
17.
Plant Methods ; 15: 106, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31528198

RESUMEN

BACKGROUND: Plant leaves have heterogeneous structures composed of spatially variable distribution of liquid, solid, and gaseous matter. Such contents and distribution characteristics correlate with the leaf vigor and phylogenic traits. Recently, terahertz (THz) techniques have been proved to access leaf water content and spatial heterogeneity distribution information, but the solid matter content and gas network information were usually ignored, even though they also affect the THz dielectric function of the leaf. RESULTS: A particle swarm optimization algorithm is employed for a one-off quantitative assay of spatial variability distribution of the leaf compositions from THz data, based on an extended Landau-Lifshitz-Looyenga model, and experimentally verified using Bougainvillea spectabilis leaves. A good agreement is demonstrated for water and solid matter contents between the THz-based method and the gravimetric analysis. In particular, the THz-based method shows good sensitivity to fine-grained differences of leaf growth and development stages. Furthermore, such subtle features as damages and wounds in leaf could be discovered through THz detection and comparison regarding spatial heterogeneity of component contents. CONCLUSIONS: This THz imaging method provides quantitative assay of the leaf constituent contents with the spatial distribution feature, which has the potential for applications in crop disease diagnosis and farmland cultivation management.

18.
Sensors (Basel) ; 19(5)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866443

RESUMEN

Terahertz time-domain spectroscopy (THz-TDS) is an effective coherent detection technique for deeply understanding the structures and functions of biomolecules. However, generally not full information in the whole THz range can be obtained due to the limited detection bandwidth (usually less than 5 THz) of the traditional THz-TDS systems. In this paper, effective THz absorption spectra in 0.5⁻10 THz range of five typical nucleobases of DNA/RNA are characterized with a super broadband THz detection technique, called the air-biased- coherent-detection (THz-ABCD) technique. Few unexpected characteristic absorption peaks appeared in the low-frequency region and meanwhile a series of anticipated characteristic absorption peaks are found in the high-frequency region. The fingerprint spectra of these nucleobases are helpful for further analysis on the vibration and twisting behavior of hydrogen bonds, van der Waals and electrostatic forces etc. between and within DNA/RNA biomolecules.

19.
Sensors (Basel) ; 19(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696003

RESUMEN

Terahertz signature detection of biological samples in aqueous solution remains a great challenge due to the strong terahertz absorption of water. Here we propose a new preparation process for fabricating a microfluidic chip and use it as an effective sensor to probe the terahertz absorption signatures of microcystin aptamer (a linear single-stranded DNA with 60 nucleotides) dissolved in TE buffer with different concentrations. The microfluidic chip made of silicon includes thousands of 2.4 µm × 2.4 µm square-cross-section channels. One repeatable terahertz absorption signature is detected and recognized around 830 GHz, fitted to a Lorentz oscillator. This signature is theorized to originate from the bending of hydrogen bonds formed between adjacent hydrated DNA bases surrounded by water molecules. Furthermore, the low-lying vibrational modes are also investigated by molecular dynamics simulations which suggest that strong resonant oscillations are highly probable in the 815⁻830 GHz frequency band.

20.
Small ; 15(4): e1804371, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30548915

RESUMEN

Amorphous metal oxides (AMOs) have aroused great enthusiasm across multiple energy areas over recent years due to their unique properties, such as the intrinsic isotropy, versatility in compositions, absence of grain boundaries, defect distribution, flexible nature, etc. Here, the materials engineering of AMOs is systematically reviewed in different electrochemical applications and recent advances in understanding and developing AMO-based high-performance electrodes are highlighted. Attention is focused on the important roles that AMOs play in various energy storage and conversion technologies, such as active materials in metal-ion batteries and supercapacitors as well as active catalysts in water splitting, metal-air batteries, and fuel cells. The improvements of electrochemical performance in metal-ion batteries and supercapacitors are reviewed regarding the enhancement in active sites, mechanical strength, and defect distribution of amorphous structures. Furthermore, the high electrochemical activities boosted by AMOs in various fundamental reactions are elaborated on and they are related to the electrocatalytic behaviors in water splitting, metal-air batteries, and fuel cells. The applications in electrochromism and high-conducting sensors are also briefly discussed. Finally, perspectives on the existing challenges of AMOs for electrochemical applications are proposed, together with several promising future research directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...