Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499747

RESUMEN

Pure titanium is used in dental implants owing to its excellent biocompatibility and physical properties. However, the aging of the material during storage is detrimental to the long-term stability of the implant after implantation. Therefore, in this study, we attempted to improve the surface properties and circumvent the negative effects of material aging on titanium implants by using a portable handheld nonthermal plasma device capable of piezoelectric direct discharge to treat pure titanium discs with nitrogen gas. We evaluated the osteogenic properties of the treated samples by surface morphology and elemental analyses, as well as in vitro and in vivo experiments. The results showed that nonthermal atmospheric-pressure nitrogen plasma can improve the hydrophilicity of pure titanium without damaging its surface morphology while introducing nitrogen-containing functional groups, thereby promoting cell attachment, proliferation, and osseointegration to some extent. Therefore, nitrogen plasma treatment may be a promising method for the rapid surface treatment of titanium implants.


Asunto(s)
Implantes Dentales , Gases em Plasma , Titanio , Nitrógeno , Oseointegración , Propiedades de Superficie
2.
Materials (Basel) ; 15(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35329758

RESUMEN

The surface of titanium (Ti) dental implants must be modified to improve their applicability, owing to the biological inertness of Ti. This study aims to use sandblasting as a pretreatment method and prepare a hydroxyapatite (HA) coating on Ti to improve its biocompatibility and induce bone bonding and osteogenesis. In this paper, sandblasted Ti discs were coated with α-tricalcium phosphate (α-TCP) via Er:YAG pulsed laser deposition (Er:YAG-PLD). An HA coating was then obtained via the hydrothermal treatment of the discs at 90 °C for 10 h. The surface characteristics of the samples were evaluated by SEM, SPM, XPS, XRD, FTIR, and tensile tests. Rat bone marrow mesenchymal stem cells were seeded on the HA-coated discs to determine cellular responses in vitro. The surface characterization results indicated the successful transformation of the HA coating with a nanorod-like morphology, and its surface roughness increased. In vitro experiments revealed increased cell attachment on the HA-coated discs, as did the cell morphology of fluorescence staining and SEM analysis; in contrast, there was no increase in cell proliferation. This study confirms that Er:YAG-PLD could be used as an implant surface-modification technique to prepare HA coatings with a nanorod-like morphology on Ti discs.

3.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299241

RESUMEN

In this paper, we suggest that the atmospheric pressure plasma treatment of pure titanium metal may be useful for improving the ability of rat bone marrow cells (RBMCs) to induce hard tissue differentiation. Previous studies have reported that the use of argon gas induces a higher degree of hard tissue formation. Therefore, this study compares the effects of plasma treatment with argon gas on the initial adhesion ability and hard tissue differentiation-inducing ability of RBMCs. A commercially available titanium metal plate was used as the experimental material. A plate polished using water-resistant abrasive paper #1500 was used as the control, and a plate irradiated with argon mixed with atmospheric pressure plasma was used as the experimental plate. No structural change was observed on the surface of the titanium metal plate in the scanning electron microscopy results, and no change in the surface roughness was observed via scanning probe microscopy. X-ray photoelectron spectroscopy showed a decrease in the carbon peak and the formation of hydroxide in the experimental group. In the distilled water drop test, a significant decrease in the contact angle was observed for the experimental group, and the results indicated superhydrophilicity. Furthermore, the bovine serum albumin adsorption, initial adhesion of RBMCs, alkaline phosphatase activity, calcium deposition, and genetic marker expression of rat bone marrow cells were higher in the experimental group than those in the control group at all time points. Rat distal femur model are used as in vivo model. Additionally, microcomputed tomography analysis showed significantly higher results for the experimental group, indicating a large amount of the formed hard tissue. Histopathological evaluation also confirmed the presence of a prominent newly formed bone seen in the images of the experimental group. These results indicate that the atmospheric pressure plasma treatment with argon gas imparts superhydrophilicity, without changing the properties of the pure titanium plate surface. It was also clarified that it affects the initial adhesion of bone marrow cells and the induction of hard tissue differentiation.


Asunto(s)
Argón/farmacología , Oseointegración/efectos de los fármacos , Gases em Plasma/química , Animales , Argón/química , Presión Atmosférica , Células de la Médula Ósea/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Masculino , Microscopía Electrónica de Rastreo/métodos , Oseointegración/fisiología , Osteogénesis/efectos de los fármacos , Espectroscopía de Fotoelectrones/métodos , Gases em Plasma/farmacología , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Titanio/química , Microtomografía por Rayos X/métodos
4.
Materials (Basel) ; 13(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570895

RESUMEN

Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group was untreated NANOZR. Observation of the surface of the UV-treated materials revealed no mechanical or structural change; however, the carbon content on the material surface was reduced, and the material surface displayed superhydrophilicity. Further, the effects of the UV-induced superhydrophilic properties of NANOZR plates on the adhesion behavior of various cells were investigated. Treatment of the NANOZR surface was found to facilitate protein adsorption onto it. An in vitro evaluation using rat bone marrow cells, human vascular endothelial cells, and rat periodontal ligament cells revealed high levels of adhesion in the experimental group. In addition, it was clarified that the NANOZR surface forms active oxygen and suppresses the generation of oxidative stress. Overall, the study results suggested that UV-treated NANOZR is useful as a new ceramic implant material.

5.
Materials (Basel) ; 13(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429186

RESUMEN

Contamination of implants is inevitable during different steps of production as well as during the clinical use. We devised a new implant cleaning strategy to restore the bioactivities on dental implant surfaces. We evaluated the efficiency of the Finevo cleaning system, and Ultraviolet and Plasma treatments to decontaminate hydrocarbon-contaminated titanium disks. The surfaces of the contaminated titanium disks cleaned using the Finevo cleaning system were similar to those of the uncontaminated titanium disks in scanning electron microscopy and X-ray photoelectron spectroscopy analysis, but no obvious change in the roughness was observed in the scanning probe microscopy analysis. The rat bone marrow mesenchymal stem cells (rBMMSCs) cultured on the treated titanium disks attached to and covered the surfaces of disks cleaned with the Finevo cleaning system. The alkaline phosphatase activity, calcium deposition, and osteogenesis-related gene expression in rBMMSCs on disks cleaned using the Finevo cleaning system were higher compared to those in the ultraviolet and plasma treatments, displaying better cell functionality. Thus, the Finevo cleaning system can enhance the attachment, differentiation, and mineralization of rBMMSCs on treated titanium disk surfaces. This research provides a new strategy for cleaning the surface of contaminated titanium dental implants and for restoration of their biological functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...