Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Cardiovasc Disord ; 23(1): 144, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949420

RESUMEN

PURPOSE: As a non-invasive tool for the assessment of cardiovascular autonomic function, the predictive value of heart rate variability (HRV) for sudden cardiac death (SCD) risk stratification remains unclear. In this study, we investigated the performance of the individualized heart rate (HR) adjusted HRV (HRVI) for SCD risk stratification in subjects with diverse risks. METHODS: A total of 11 commonly used HRV metrics were analyzed in 192 subjects, including 88 healthy controls (low risk group), 82 hypertrophic cardiomyopathy (HCM) patients (medium risk group), and 22 SCD victims (high risk group). The relationship between HRV metrics and HR was examined with long-term and short-term analysis. The performance HRVI was evaluated by area under the receiver operating characteristic curve (AUC) and covariance of variation (CV). RESULTS: Most of the HRV metrics were exponentially decayed with the increase of HR, while the exponential power coefficients were significantly different among groups. The HRVI metrics discriminated low, medium and high risk subjects with a median AUC of 0.72[0.11], which was considerably higher than that of the traditional long-term (0.63[0.04]) and short-term (0.58[0.05]) HRV without adjustment. The average CV of the HRVI metrics was also significantly lower than traditional short-term HRV metrics (0.09 ± 0.02 vs. 0.24 ± 0.13, p < 0.01). CONCLUSIONS: Subjects with diverse risks of SCD had similar exponential decay relationship between HRV metrics and HR, but with different decaying rates. HRVI provides reliable and robust estimation for risk stratification of SCD.


Asunto(s)
Cardiomiopatía Hipertrófica , Muerte Súbita Cardíaca , Humanos , Frecuencia Cardíaca/fisiología , Muerte Súbita Cardíaca/etiología , Corazón , Factores de Riesgo , Medición de Riesgo
2.
Environ Pollut ; 319: 120943, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584854

RESUMEN

Numerous evidence showed that the occurrence and development of lung cancer is closely related to environmental pollution. Therefore, new environmental response predictive markers are urgently needed for early diagnosis and screening of lung cancer. Interferon-induced protein 44-like (IFI44L) has been shown to be related in a variety of tumors, but its function and mechanism during lung carcinogenesis still have remained largely unknown. In this study, gene expression and methylation status were analyzed through online tools and malignant transformation models. Differentially expressed cell models and xenograft tumor models were established and used to clarify the gene function. RT-qPCR, western blotting, immunohistochemistry, and co-immunoprecipitation (Co-IP) were used to explore the mechanism. Results showed that IFI44L was dramatically downexpressed during lung carcinogenesis, and its low expression may be attributed to DNA methylation. Overexpression of IFI44L obviously inhibited cell growth and promoted apoptosis. After knockdown of IFI44L expression, the proliferation ability was remarkably increased and the apoptosis was significantly reduced. Functional enrichment showed that IFI44L was involved in apoptosis and JAK/STAT1 signaling pathway, and was highly correlated with downstream molecules. After overexpression of IFI44L, the expression of P-STAT1 and downstream molecules XAF1, OAS1, OAS2 and OAS3 were significantly increased. After knockdown of STAT1 expression, the pro-apoptotic effect of IFI44L was reduced. Co-IP results showed that IFI44L had protein interaction with STAT1. Results proved that IFI44L promoted STAT1 phosphorylation and activated the JAK/STAT1 signaling pathway by directly binding to STAT1 protein, thereby leading to cell apoptosis. Our study revealed that IFI44L promotes cell apoptosis and exerts tumor suppressors by activating the JAK/STAT1 signaling pathway. It further suggests that IFI44L has clinical therapeutic potential and may be a promising biomarker during lung carcinogenesis.


Asunto(s)
Neoplasias Pulmonares , Humanos , Apoptosis , Carcinogénesis/genética , Línea Celular Tumoral , Epigénesis Genética , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...