Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1392990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040506

RESUMEN

Introduction: Natural hybridization is common and plays a crucial role in driving biodiversity in nature. Despite its significance, the understanding of hybridization in ferns remains inadequate. Therefore, it is imperative to study fern hybridization to gain a more comprehensive understanding of fern biodiversity. Our study delves into the role of hybridization in shaping fern species, employing Microlepia matthewii as a case study to investigate its origins of hybridization. Methods: We performed double digest Genotyping-by-sequencing (dd-GBS) on M. matthewii and its potential parent species, identifying nuclear and chloroplast SNPs. Initially, nuclear SNPs were employed to construct the three cluster analysis: phylogenetic tree, principal component analysis, and population structure analysis. Subsequently, to confirm whether the observed genetic mixture pattern resulted from hybridization, we utilized two methods: ABBA-BABA statistical values in the D-suite program and gene frequency covariance in the Treemix software to detect gene flow. Finally, we employed chloroplast SNPs to construct a phylogenetic tree, tracing the maternal origin. Results and discussion: The analysis of the nuclear SNP cluster revealed that M. matthewii possesses a genetic composition that is a combination of M. hancei and M. calvescens. Furthermore, the analysis provided strong evidence of significant gene flow signatures from the parental species to the hybrid, as indicated by the two gene flow analyses. The samples of M. matthewii cluster separately with M. hancei or M. calvescens on the chloroplast systematic tree. However, the parentage ratio significantly differs from 1:1, suggesting that M. matthewii is a bidirectional and asymmetrical hybrid offspring of M. hancei and M. calvescens.

2.
Front Plant Sci ; 15: 1410554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974983

RESUMEN

Introduction: Several studies of MADS-box transcription factors in flowering plants have been conducted, and these studies have indicated that they have conserved functions in floral organ development; MIKC-type MADS-box genes has been proved to be expanded in ferns, however, few systematic studies of these transcription factors have been conducted in non-seed plants. Although ferns and seed plants are sister groups, they exhibit substantial morphological differences. Methods: Here, we clarified the evolution of MADS-box genes across 71 extant fern species using available transcriptome, genome, and gene expression data. Results: We obtained a total of 2,512 MADS-box sequences, ranging from 9 to 89 per species. The most recent common ancestor (MRCA) of ferns contained approximately three type I genes and at least 5-6 type II MADS-box genes. The domains, motifs, expression of type I and type II proteins, and the structure of the both type genes were conserved in ferns as to other land plants. Within type II genes, MIKC*-type proteins are involved in gametophyte development in ferns; MIKCC-type proteins have broader expression patterns in ferns than in seed plants, and these protein sequences are likely conserved in extant seed plants and ferns because of their diverse roles in diploid sporophyte development. More than 90% of MADS-box genes are type II genes, and MIKCC genes, especially CRM1 and CRM6-like genes, have undergone a large expansion in leptosporangiate ferns; the diverse expression patterns of these genes might be related to the fuctional diversification and increased complexity of the plant body plan. Tandem duplication of CRM1 and CRM6-like genes has contributed to the expansion of MIKCC genes. Conclusion or Discussion: This study provides new insights into the diversity, evolution, and functions of MADS-box genes in extant ferns.

3.
Plants (Basel) ; 13(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065514

RESUMEN

Species identification and phylogenetic relationship clarification are fundamental goals in species delimitation. However, these tasks pose challenges when based on morphologies, geographic distribution, and genomic data. Previously, two species of the fern genus Bolbitis, B. × multipinna and B. longiaurita were described based on morphological traits; they are phylogenetically intertwined with B. sinensis and fail to form monophyletic groups. To address the unclear phylogenetic relationships within the B. sinensis species complex, RAD sequencing was performed on 65 individuals from five populations. Our integrated analysis of phylogenetic trees, neighbor nets, and genetic structures indicate that the B. sinensis species complex should not be considered as separate species. Moreover, our findings reveal differences in the degree of genetic differentiation among the five populations, ranging from low to moderate, which might be influenced by geographical distance and gene flow. The Fst values also confirmed that genetic differentiation intensifies with increasing geographic distance. Collectively, this study clarifies the complex phylogenetic relationships within the B. sinensis species complex, elucidates the genetic diversity and differentiation across the studied populations, and offers valuable genetic insights that contribute to the broader study of evolutionary relationships and population genetics within the Bolbitis species.

4.
PhytoKeys ; 241: 177-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721011

RESUMEN

Angiopterisnodosipetiolata Ting Wang tris, H.F.Chen & Y.H.Yan, a new fern of Marattiaceae, is described and illustrated. Morphologically, A.nodosipetiolata is similar to A.chingii with more than one naked pulvinus on the stipe and numerous jointed hairs on the undersides of the mature pinnae. However, the pinnae of A.nodosipetiolata are lanceolate and can reach up to 4-6 pairs, whereas they are elliptic and occur in 2-3 pairs in A.chingii. Phylogenetic and genetic distance analysis, based on the plastid genomes, also indicates that A.nodosipetiolata is not closely related to A.chingii. Currently, there are ca. 500 mature individuals in Gulinqing Nature Reserve and we suggest A.nodosipetiolata should be categorised as an Endangered (EN) species according to the criteria of IUCN.

5.
Front Plant Sci ; 15: 1328080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665369

RESUMEN

Equisetum is one of the oldest extant group vascular plants and is considered to be the key to understanding vascular plant evolution. Equisetum is distributed almost all over the world and has a high degree of adaptability to different environments. Despite the fossil record of horsetails (Equisetum, Equisetaceae) dating back to the Carboniferous, the phylogenetic relationship of this genus is not well, and the chloroplast evolution in Equisetum remains poorly understood. In order to fill this gap, we sequenced, assembled, and annotated the chloroplast genomes of 12 species of Equisetum, and compared them to 13 previously published vascular plants chloroplast genomes to deeply examine the plastome evolutionary dynamics of Equisetum. The chloroplast genomes have a highly conserved quadripartite structure across the genus, but these chloroplast genomes have a lower GC content than other ferns. The size of Equisetum plastomes ranges from 130,773 bp to 133,684 bp and they encode 130 genes. Contraction/expansion of IR regions and the number of simple sequences repeat regions underlie large genomic variations in size among them. Comparative analysis revealed we also identified 13 divergence hotspot regions. Additionally, the genes accD and ycf1 can be used as potential DNA barcodes for the identification and phylogeny of the genus Equisetum. Twelve photosynthesis-related genes were specifically selected in Equisetum. Comparative genomic analyses implied divergent evolutionary patterns between Equisetum and other ferns. Phylogenomic analyses and molecular dating revealed a relatively distant phylogenetic relationship between Equisetum and other ferns, supporting the division of pteridophyte into Lycophytes, Equisetaceae and ferns. The results show that the chloroplast genome can be used to solve phylogenetic problems within or between Equisetum species, and also provide genomic resources for the study of Equisetum systematics and evolution.

6.
Plants (Basel) ; 13(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38498522

RESUMEN

As the only aquatic lineage of Pteridaceae, Parkerioideae is distinct from many xeric-adapted species of the family and consists of the freshwater Ceratopteris species and the only mangrove ferns from the genus Acrostichum. Previous studies have shown that whole genome duplication (WGD) has occurred in Parkerioideae at least once and may have played a role in their adaptive evolution; however, more in-depth research regarding this is still required. In this study, comparative and evolutionary transcriptomics analyses were carried out to identify WGDs and explore their roles in the environmental adaptation of Parkerioideae. Three putative WGD events were identified within Parkerioideae, two of which were specific to Ceratopteris and Acrostichum, respectively. The functional enrichment analysis indicated that the lineage-specific WGD events have played a role in the adaptation of Parkerioideae to the low oxygen concentrations of aquatic habitats, as well as different aquatic environments of Ceratopteris and Acrostichum, such as the adaptation of Ceratopteris to reduced light levels and the adaptation of Acrostichum to high salinity. Positive selection analysis further provided evidence that the putative WGD events may have facilitated the adaptation of Parkerioideae to changes in habitat. Moreover, the gene family analysis indicated that the plasma membrane H+-ATPase (AHA), vacuolar H+-ATPase (VHA), and suppressor of K+ transport growth defect 1 (SKD1) may have been involved in the high salinity adaptation of Acrostichum. Our study provides new insights into the evolution and adaptations of Parkerioideae in different aquatic environments.

7.
Am J Nephrol ; 54(11-12): 479-488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37812931

RESUMEN

INTRODUCTION: Hyperphosphatemia in chronic kidney disease (CKD) patients is positively associated with mortality. Ferric citrate is a potent phosphorus binder that lowers serum phosphorus level and improves iron metabolism. We compared its efficacy and safety with active drugs in Chinese CKD patients with hemodialysis. METHODS: Chinese patients undergoing hemodialysis were randomized into two treatment groups in a 1:1 ratio, receiving either ferric citrate or sevelamer carbonate, respectively, for 12 weeks. Serum phosphorus levels, calcium concentration, and iron metabolism parameters were evaluated every 2 weeks. Frequency and severity of adverse events were recorded. RESULTS: 217 (90.4%) patients completed the study with balanced demographic and baseline characteristics between two groups. Ferric citrate decreased the serum phosphorus level to 0.59 ± 0.54 mmol/L, comparable to 0.56 ± 0.62 mmol/L by sevelamer carbonate. There was no significant difference between two groups (p > 0.05) in the proportion of patients with serum phosphorus levels reaching the target range, the response rate to the study drug, and the changes of corrected serum calcium concentrations, and intact-PTH levels at the end of treatment. The change of iron metabolism indicators in the ferric citrate group was significantly higher than those in the sevelamer carbonate group. There are 47 (40.5%) patients in the ferric citrate group, and 26 (21.3%) patients in the sevelamer carbonate group experienced drug-related treatment emergent adverse events (TEAEs); most were mild and tolerable. Common drug-related TEAEs were gastrointestinal disorders, including diarrhea (12.9 vs. 2.5%), fecal discoloration (14.7 vs. 0%), and constipation (1.7 vs. 7.4%) in ferric citrate and sevelamer carbonate group. CONCLUSION: Ferric citrate capsules have good efficacy and safety in the control of hyperphosphatemia in adult patients with CKD undergoing hemodialysis. Efficacy is not inferior to sevelamer carbonate. The TEAEs were mostly mild and tolerated by the patients.


Asunto(s)
Hiperfosfatemia , Insuficiencia Renal Crónica , Adulto , Humanos , Hiperfosfatemia/tratamiento farmacológico , Hiperfosfatemia/etiología , Sevelamer/efectos adversos , Calcio , Quelantes/efectos adversos , Diálisis Renal/efectos adversos , Compuestos Férricos/efectos adversos , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/tratamiento farmacológico , Fósforo , Hierro/uso terapéutico , China
8.
Plant Divers ; 45(3): 284-301, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37397601

RESUMEN

Cryptic species are commonly misidentified because of high morphological similarities to other species. One group of plants that may harbor large numbers of cryptic species is the quillworts (Isoëtes spp.), an ancient aquatic plant lineage. Although over 350 species of Isoëtes have been reported globally, only ten species have been recorded in China. The aim of this study is to better understand Isoëtes species diversity in China. For this purpose, we systematically explored the phylogeny and evolution of Isoëtes using complete chloroplast genome (plastome) data, spore morphology, chromosome number, genetic structure, and haplotypes of almost all Chinese Isoëtes populations. We identified three ploidy levels of Isoëtes in China-diploid (2n = 22), tetraploid (2n = 44), and hexaploid (2n = 66). We also found four megaspore and microspore ornamentation types in diploids, six in tetraploids, and three in hexaploids. Phylogenetic analyses confirmed that I. hypsophila as the ancestral group of the genus and revealed that Isoëtes diploids, tetraploids, and hexaploids do not form monophyletic clades. Most individual species possess a single genetic structure; however, several samples have conflicting positions on the phylogenetic tree based on SNPs and the tree based on plastome data. All 36 samples shared 22 haplotypes. Divergence time analysis showed that I. hypsophila diverged in the early Eocene (∼48.05 Ma), and most other Isoëtes species diverged 3-20 Ma. Additionally, different species of Isoëtes were found to inhabit different water systems and environments along the Yangtze River. These findings provide new insights into the relationships among Isoëtes species in China, where highly similar morphologic populations may harbor many cryptic species.

9.
Plants (Basel) ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050204

RESUMEN

Understanding the evolutionary history of endangered species is crucial for identifying the main reasons for species endangerment in the past and predicting the changing trends and evolutionary directions of their future distribution. In order to study the impact of environmental changes caused by deep valley incision after the uplift of the Qinghai-Tibet Plateau on endangered species, we collected 23 samples belonging to four populations of Aleuritopteris grevilleoides, an endangered fern endemic to the dry-hot valleys (DHV) of Yunnan. Single-nucleotide variation sites (SNPs) were obtained by the genotyping-by-sequencing (GBS) method, and approximately 8085 SNP loci were identified. Through the reconstruction and analysis of genetic diversity, population structure, population dynamics, evolution time, and ancestral geographical distribution, combined with geological historical events such as the formation of dry-hot valleys, this study explores the formation history, current situation, reasons for endangerment and scientifically sound measures for the protection of A. grevilleoides. In our study, A. grevilleoides had low genetic diversity (Obs_Het = 0.16, Exp_Het = 0.32, Pi = 0.33) and a high inbreeding coefficient (Fis = 0.45). The differentiation events were 0.18 Mya, 0.16 Mya, and 0.11 Mya in the A. grevilleoides and may have been related to the formation of terraces within the dry-hot valleys. The history of population dynamics results shows that the diversion of the river resulted in a small amount of gene flow between the two clades, accompanied by a rapid increase in the population at 0.8 Mya. After that, the effective population sizes of A. grevilleoides began to contract continuously due to topographic changes resulting from the continuous expansion of dry-hot valleys. In conclusion, we found that the environmental changes caused by geological events might be the main reason for the changing population size of A. grevilleoides.

10.
Mol Phylogenet Evol ; 178: 107633, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182051

RESUMEN

Bolbitis is a pantropical fern genus of Dryopteridaceae with ca. 80 species mainly in tropical Asia. Earlier studies confirmed the monophyly of Bolbitis when Mickelia is excluded and identified three major clades in Bolbitis. However, earlier studies are based on relatively small sampling and the majority of Asian species are not sampled. In this study, DNA sequences of three plastid markers of 169 accessions representing ca. 68 (85 % of total) species of Bolbitis in nine out of the 10 series recognized by Hennipman (1977), and 54 accessions representing the five remaining bolbitidoid genera are used to infer a global phylogeny with a focus on Asian species. The major results include: (1) Bolbitis is strongly supported as monophyletic; (2) species of Bolbitis are resolved into four major clades and their relationships are: the Malagasy/Mascarene clade is sister to the rest, followed by the African clade which is sister to the American clade + the Asian clade; (3) six well-supported subclades are identified in the most speciose Asian clade; (4) the free-veined Egenolfia is embedded in Bolbitis and is paraphyletic in relation to species with anastomosing venation; (5) three series sensu Hennipman (1977), B. ser. Alienae, B. ser. Egenolfianae, and B. ser. Heteroclitae, are paraphyletic or polyphyletic; (6) evolution of six morphological characters is analyzed and free venation is found to have evolved from anastomosing venation and reversed to free venation in Bolbitis; and (7) biogeographical implications are drawn and it is shown that a single recent dispersal from Asia resulted in continental disjunction of closely related ferns of Bolbitis between Africa and America.


Asunto(s)
Dryopteridaceae , Helechos , Filogenia , Plastidios/genética , Secuencia de Bases
11.
Front Plant Sci ; 13: 918155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507421

RESUMEN

Phylogenomic studies based on plastid genome have resolved recalcitrant relationships among various plants, yet the phylogeny of Dennstaedtiaceae at the level of family and genera remains unresolved due to conflicting plastid genes, limited molecular data and incomplete taxon sampling of previous studies. The present study generated 30 new plastid genomes of Dennstaedtiaceae (9 genera, 29 species), which were combined with 42 publicly available plastid genomes (including 24 families, 27 genera, 42 species) to explore the evolution of Dennstaedtiaceae. In order to minimize the impact of systematic errors on the resolution of phylogenetic inference, we applied six strategies to generate 30 datasets based on CDS, intergenic spacers, and whole plastome, and two tree inference methods (maximum-likelihood, ML; and multispecies coalescent, MSC) to comprehensively analyze the plastome-scale data. Besides, the phylogenetic signal among all loci was quantified for controversial nodes using ML framework, and different topologies hypotheses among all datasets were tested. The species trees based on different datasets and methods revealed obvious conflicts at the base of the polypody ferns. The topology of the "CDS-codon-align-rm3" (CDS with the removal of the third codon) matrix was selected as the primary reference or summary tree. The final phylogenetic tree supported Dennstaedtiaceae as the sister group to eupolypods, and Dennstaedtioideae was divided into four clades with full support. This robust reconstructed phylogenetic backbone establishes a framework for future studies on Dennstaedtiaceae classification, evolution and diversification. The present study suggests considering plastid phylogenomic conflict when using plastid genomes. From our results, reducing saturated genes or sites can effectively mitigate tree conflicts for distantly related taxa. Moreover, phylogenetic trees based on amino acid sequences can be used as a comparison to verify the confidence of nucleotide-based trees.

12.
Mitochondrial DNA B Resour ; 7(11): 1983-1984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406827

RESUMEN

Isoetes japonica A. Braun is a heterosporous quillwort living in low-altitude areas in Japan. In the present study, the complete chloroplast genome of I. japonica was assembled and annotated. This chloroplast genome is a circular structure of 145,517 bp in length, comprising a pair of inverted repeat (IR) regions of 13,204 bp each, a large single copy (LSC) region of 91,868 bp, and a small single copy (SSC) region of 27,241 bp. The chloroplast genome contains 135 genes, including 78 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Phylogenetic analysis showed that I. japonica is sister to I. sinensis and I. yunguiensis. These results provide additional resources for the future studies on Isoetes species.

13.
Genes (Basel) ; 13(11)2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36421768

RESUMEN

Dendrobium catenatum (Dendrobium officinale) is a valuable genuine herb. The source of this species is difficult to be identified by traditional methods including morphology, spectroscopy, and chromatography. We used the restriction site-associated DNA sequencing (RAD-seq) approach to perform the high-throughput sequencing of 24 D. catenatum provenances. In this study, 371.18 Gb clean data were obtained, and 655,057 high-quality SNPs were selected after their filtration. We used phylogenetic tree, genetic structure, and principal component analyses to examine the genetic diversities and genetic relationships of the 109 accessions. We found that D. catenatum could be divided into two groups, and each group was closely related to the distribution of the sampling sites. At the population level, the average nucleotide diversity (π) of the D. catenatum population mutation parameters was 0.1584 and the expected heterozygosity (HE) was 0.1575. The GXLPTP07 accessions showed the highest genetic diversity in terms of the private allele number, observed heterozygosity, and nucleotide diversity. The Mantel test showed a significant positive correlation between the genetic and geographic distances among the overall distribution. A genetic information database of D. catenatum was established, which confirmed that RAD-seq technology has the potential to be applied in the identification of medicinal Dendrobium of different origins.


Asunto(s)
Dendrobium , Filogenia , Dendrobium/genética , Nucleótidos , Análisis de Secuencia de ADN
14.
Nat Plants ; 8(9): 1024-1037, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36050462

RESUMEN

Euphyllophytes encompass almost all extant plants, including two sister clades, ferns and seed plants. Decoding genomes of ferns is the key to deep insight into the origin of euphyllophytes and the evolution of seed plants. Here we report a chromosome-level genome assembly of Adiantum capillus-veneris L., a model homosporous fern. This fern genome comprises 30 pseudochromosomes with a size of 4.8-gigabase and a contig N50 length of 16.22 Mb. Gene co-expression network analysis uncovered that homospore development in ferns has relatively high genetic similarities with that of the pollen in seed plants. Analysing fern defence response expands understanding of evolution and diversity in endogenous bioactive jasmonates in plants. Moreover, comparing fern genomes with those of other land plants reveals changes in gene families important for the evolutionary novelties within the euphyllophyte clade. These results lay a foundation for studies on fern genome evolution and function, as well as the origin and evolution of euphyllophytes.


Asunto(s)
Adiantum , Helechos , Adiantum/genética , Helechos/genética , Genoma de Planta , Filogenia
15.
Genome Biol Evol ; 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946426

RESUMEN

Whole genome duplication has been recognized as a major process in speciation of land plants, especially in ferns. Whereas genome downsizing contributes greatly to the post-genome shock responses of polyploid flowering plants, diploidization of polyploid ferns diverges by maintaining most of the duplicated DNA and is thus expected to be dominated by genic processes. As a consequence, fern genomes provide excellent opportunities to study ecological speciation enforced by expansion of protein families via polyploidy. To test the key predictions of this hypothesis, we reported the de novo genome sequence of Adiantum nelumboides, a tetraploid homosporous fern. The obtained draft genome had a size of 6.27 Gb assembled into 11,767 scaffolds with the contig N50 of 1.37 Mb. Repetitive DNA sequences contributed with about 81.7%, a remarkably high proportion of the genome. With 69,568 the number of predicted protein-coding genes exceeded those reported in most other land plant genomes. Intragenomic synteny analyses recovered 443 blocks with the average block size of 1.29 Mb and the average gene content of 16 genes. The results are consistent with the hypothesis of high ancestral chromosome number, lack of substantial genome downsizing, and dominance of genic diploidization. As expected in the calciphilous plants, a notable number of detected genes were involved in calcium uptake and transport. In summary, the genome sequence of a tetraploid homosporous fern not only provides access to a genomic resource of a derived fern, but also supports the hypothesis of maintenance of high chromosome numbers and duplicated DNA in young polyploid ferns.

16.
Genes (Basel) ; 13(7)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35886063

RESUMEN

Although extant lycophytes represent the most ancient surviving lineage of early vascular plants, their plastomic diversity has long been neglected. The ancient evolutionary history and distinct genetic diversity patterns of the three lycophyte families, each with its own characteristics, provide an ideal opportunity to investigate the interfamilial relationships of lycophytes and their associated patterns of evolution. To compensate for the lack of data on Lycopodiaceae, we sequenced and assembled 14 new plastid genomes (plastomes). Combined with other lycophyte plastomes available online, we reconstructed the phylogenetic relationships of the extant lycophytes based on 93 plastomes. We analyzed, traced, and compared the plastomic diversity and divergence of the three lycophyte families (Isoëtaceae, Lycopodiaceae, and Selaginellaceae) in terms of plastomic diversity by comparing their plastome sizes, GC contents, substitution rates, structural rearrangements, divergence times, ancestral states, RNA editings, and gene losses. Comparative analysis of plastid phylogenomics and plastomic diversity of three lycophyte families will set a foundation for further studies in biology and evolution in lycophytes and therefore in vascular plants.


Asunto(s)
Genoma de Plastidios , Tracheophyta , Composición de Base , Evolución Molecular , Humanos , Filogenia , Plastidios/genética , Tracheophyta/genética
17.
Plants (Basel) ; 11(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35736680

RESUMEN

Phylogenetic conflicts limit our understanding of the evolution of terrestrial life under multiple whole genome duplication events, and the phylogeny of early terrestrial plants remains full of controversy. Although much incongruence has been solved with so-called robust topology based on single or lower copy genes, the evolutionary mechanisms behind phylogenetic conflicts such as polyploidization remain poorly understood. Here, through decreasing the effects of polyploidization and increasing the samples of species, which represent all four orders and eight families that comprise early leptosporangiate ferns, we have reconstructed a robust phylogenetic tree and network with 1125 1-to-1 orthologs based on both coalescent and concatenation methods. Our data consistently suggest that Matoniales, as a monophyletic lineage including Matoniaceae and Dipteridaceae, should be redefined as an ordinal rank. Furthermore, we have identified and located at least 11 whole-genome duplication events within the evolutionary history of four leptosporangiates lineages, and associated polyploidization with higher speciation rates and mass extinction events. We hypothesize that paleopolyploidization may have enabled leptosporangiate ferns to survive during mass extinction events at the end Permian period and then flourish throughout the Mesozoic era, which is supported by extensive fossil records. Our results highlight how ancient polyploidy can result in rapid species radiation, thus causing phylogenetic conflicts yet allowing plants to survive and thrive during mass extinction events.

18.
Plant Divers ; 44(3): 300-307, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35769586

RESUMEN

Understanding how natural hybridization and polyploidizations originate in plants requires identifying potential diploid ancestors. However, cryptic plant species are widespread, particularly in Ceratopteris (Pteridaceae). Identifying Ceratopteris cryptic species with different polyploidy levels is a challenge because Ceratopteris spp. exhibit high degrees of phenotypic plasticity. Here, two new cryptic species of Ceratopteris, Ceratopteris chunii and Ceratopteris chingii, are described and illustrated. Phylogenetic analyses reveal that each of the new species form a well-supported clade. C. chunii and C. chingii are similar to Ceratopteris gaudichaudii var. vulgaris and C. pteridoides, respectively, but distinct from their relatives in the stipe, basal pinna of the sterile leaf or subelliptic shape of the fertile leaf, as well as the spore surface. In addition, chromosome studies indicate that C. chunii and C. chingii are both diploid. These findings will help us further understand the origin of Ceratopteris polyploids in Asia.

19.
Plant Divers ; 44(3): 262-270, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35769590

RESUMEN

Lycophytes are an ancient clade of the non-flowering vascular plants with chromosome numbers that vary from tens to hundreds. They are an excellent study system for examining whole-genome duplications (WGDs), or polyploidization, in spore-dispersed vascular plants. However, a lack of genome sequence data limits the reliable detection of very ancient WGDs, small-scale duplications (SSDs), and recent WGDs. Here, we integrated phylogenomic analysis and the distribution of synonymous substitutions per synonymous sites (Ks) of the transcriptomes of 13 species of lycophytes to identify, locate, and date multiple WGDs in the lycophyte family Lycopodiaceae. Additionally, we examined the genus Phlegmariurus for signs of genetic discordance, which can provide valuable insight into the underlying causes of such conflict (e.g., hybridization, incomplete lineage sorting, or horizontal gene transfer).We found strong evidence that two WGD events occurred along the phylogenetic backbone of Lycopodiaceae, with one occurring in the common ancestor of extant Phlegmariurus (Lycopodiaceae) approximately 22-23 million years ago (Mya) and the other occurring in the common ancestor of Lycopodiaceae around 206-214 Mya. Interestingly, we found significant genetic discordance in the genus Phlegmariurus, indicating that the genus has a complex evolutionary history. This study provides molecular evidence for multiple WGDs in Lycopodiaceae and offers phylogenetic clues to the evolutionary history of Lycopodiaceae.

20.
Plants (Basel) ; 11(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35567199

RESUMEN

While roots and leaves have evolved independently in lycophytes, ferns and seed plants, there is still confusion regarding the morphological evolution of ferns, especially in whisk ferns, which lack true leaves and roots and instead only exhibit leaf-like appendages and absorptive rhizoids. In this study, analyses of comparative transcriptomics on positively selected genes were performed to provide insights into the adaptive evolution of whisk fern morphologies. Significantly clustered gene families specific to whisk ferns were mainly enriched in Gene Ontology (GO) terms "binding proteins" and "transmembrane transporter activity", and positive selection was detected in genes involved in transmembrane transporter activities and stress response (e.g., sodium/hydrogen exchanger and heat shock proteins), which could be related to the adaptive evolution of tolerance to epiphytic environments. The analysis of TF/TR gene family sizes indicated that some rapidly evolving gene families (e.g., the GRF and the MADS-MIKC families) related to the development of morphological organs were commonly reduced in whisk ferns and ophioglossoid ferns. Furthermore, the WUS homeobox-containing (WOX) gene family and the knotted1-like homeobox (KNOX) gene family, both associated with root and leaf development, were phylogenetically conserved in whisk ferns and ophioglossoid ferns. In general, our results suggested that adaptive evolution to epiphytic environments might have occurred in whisk ferns. We propose that the simplified and reduced leaf and root system in whisk ferns is the result of reduction from the common ancestor of whisk ferns and ophioglossoid ferns, rather than an independent origin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA