Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Front Nutr ; 11: 1377910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784137

RESUMEN

Background: Frailty is a complex clinical syndrome characterized by a decline in the functioning of multiple body systems and reduced adaptability to external stressors. Dietary ω-3 fatty acids are considered beneficial dietary nutrients for preventing frailty due to their anti-inflammatory and immune-regulating properties. However, previous research has yielded conflicting results, and the association between ω-6 fatty acids, the ω-6: ω-3 ratio, and frailty remains unclear. This study aims to explore the relationship between these factors using the National Health and Nutrition Examination Survey (NHANES) database. Materials and methods: Specialized weighted complex survey design analysis software was employed to analyze data from the 2005-2014 NHANES, which included 12,315 participants. Multivariate logistic regression models and restricted cubic splines (RCS) were utilized to assess the relationship between omega intake and frailty risk in all participants. Additionally, a nomogram model for predicting frailty risk was developed based on risk factors. The reliability of the clinical model was determined by the area under the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA). Results: In dietary ω-3 intake, compared to the T1 group (≤1.175 g/d), the T3 group's intake level (>2.050 g/d) was associated with approximately 17% reduction in frailty risk in model 3, after rigorous covariate adjustments (odds ratio (OR) = 0.83, 95% confidence interval (CI): (0.70, 0.99)). In dietary ω-6 intake, the T2 group's intake level (>11.423, ≤19.160 g/d) was associated with a 14% reduction in frailty risk compared to the T1 group (≤11.423 g/d) (OR: 0.86, 95% CI: 0.75, 1.00, p = 0.044). RCS results indicated a non-linear association between ω-3 and ω-6 intake and frailty risk. Both ROC and DCA curves demonstrated the stability of the constructed model and the effectiveness of an omega-rich diet in reducing frailty risk. However, we did not find a significant association between the ω-6: ω-3 ratio and frailty. Conclusion: This study provides support for the notion that a high intake of ω-3 and a moderate intake of ω-6 may contribute to reducing frailty risk in middle-aged and elderly individuals.

2.
J Neuroinflammation ; 21(1): 94, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622640

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS: We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS: We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS: These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fibrina , Humanos , Ratones , Animales , Fibrina/genética , Fibrina/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Fibrinógeno/metabolismo , Inmunidad Innata , Estrés Oxidativo , Ratones Endogámicos C57BL
3.
Front Endocrinol (Lausanne) ; 15: 1272314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455653

RESUMEN

Background: Low levels of high-density lipoprotein cholesterol (HDL-C) are commonly seen in patients with type 2 diabetes mellitus (T2DM). However, it is unclear whether there is an independent or causal link between HDL-C levels and T2DM. This study aims to address this gap by using the The National Health and Nutrition Examination Survey (NHANES) database and Mendelian randomization (MR) analysis. Materials and methods: Data from the NHANES survey (2007-2018) with 9,420 participants were analyzed using specialized software. Logistic regression models and restricted cubic splines (RCS) were used to assess the relationship between HDL-C and T2DM incidence, while considering covariates. Genetic variants associated with HDL-C and T2DM were obtained from genome-wide association studies (GWAS), and Mendelian randomization (MR) was used to evaluate the causal relationship between HDL-C and T2DM. Various tests were conducted to assess pleiotropy and outliers. Results: In the NHANES study, all groups, except the lowest quartile (Q1: 0.28-1.09 mmol/L], showed a significant association between HDL-C levels and reduced T2DM risk (all P < 0.001). After adjusting for covariates, the Q2 [odds ratio (OR) = 0.67, 95% confidence interval (CI): (0.57, 0.79)], Q3 [OR = 0.51, 95% CI: (0.40, 0.65)], and Q4 [OR = 0.29, 95% CI: (0.23, 0.36)] groups exhibited average reductions in T2DM risk of 23%, 49%, and 71%, respectively. In the sensitivity analysis incorporating other lipid levels, the Q4 group still demonstrates a 57% reduction in the risk of T2DM. The impact of HDL-C levels on T2DM varied with age (P for interaction = 0.006). RCS analysis showed a nonlinear decreasing trend in T2DM risk with increasing HDL-C levels (P = 0.003). In the MR analysis, HDL-C levels were also associated with reduced T2DM risk (OR = 0.69, 95% CI = 0.52-0.82; P = 1.41 × 10-13), and there was no evidence of pleiotropy or outliers. Conclusion: This study provides evidence supporting a causal relationship between higher HDL-C levels and reduced T2DM risk. Further research is needed to explore interventions targeting HDL-C levels for reducing T2DM risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , HDL-Colesterol/genética , Factores de Riesgo , Análisis de la Aleatorización Mendeliana , Encuestas Nutricionales , Triglicéridos , Estudio de Asociación del Genoma Completo , LDL-Colesterol/genética
4.
Acta Neurol Belg ; 124(2): 485-494, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37889424

RESUMEN

BACKGROUND: The use of circulating lipid traits as biomarkers to predict the risk of amyotrophic lateral sclerosis (ALS) is currently controversial, and the evidence-based medical evidence for the use of lipid-lowering agents, especially statins, on ALS risk remains insufficient. Our aim was to apply a Mendelian randomization (MR) approach to assess the causal impact of lipid-lowering agents and circulating lipid traits on ALS risk. MATERIALS AND METHODS: Our study included primary and secondary analyses, in which the risk associations of lipid-lowering gene inhibitors, lipid traits, and ALS were assessed by the inverse variance weighting method as the primary approach. The robustness of the results was assessed using LDSC assessment, conventional MR sensitivity analysis, and used Mediating MR to explore potential mechanisms of occurrence. In the secondary analysis, the association of lipid-lowering genes with ALS was validated using the Summary data-based Mendelian Randomization (SMR) method. RESULTS: Our results showed strong evidence between genetic proxies for Apolipoprotein B (ApoB) inhibitor (OR = 0.76, 95% CI = 0.68 - 0.86; P = 5.58 × 10-6) and reduced risk of ALS. Additionally, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor (OR = 1.06, 95% CI = 0. 85-1.33) was not found to increase ALS risk. SMR results suggested that ApoB expression was associated with increased ALS risk, and colocalization analysis did not support a significant common genetic variation between ApoB and ALS. Mediator MR analysis suggested a possible mediating role for interleukin-6 and low-density lipoprotein cholesterol (LDL-C). While elevated LDL-C was significantly associated with increased risk of ALS among lipid traits, total cholesterol (TC) and ApoB were weakly associated with ALS. LDSC results suggested a potential genetic correlation between these lipid traits and ALS. CONCLUSIONS: Using ApoB inhibitor can lower the risk of ALS, statins do not trigger ALS, and LDL-C, TC, and ApoB levels can predict the risk of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , LDL-Colesterol/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Esclerosis Amiotrófica Lateral/genética , Análisis de la Aleatorización Mendeliana , Apolipoproteínas B/genética , Polimorfismo de Nucleótido Simple
5.
Front Med (Lausanne) ; 10: 1270368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076255

RESUMEN

Background: Inflammation is the core of Chronic obstructive pulmonary disease (COPD) development. The systemic immune-inflammation index (SII) is a new biomarker of inflammation. However, it is currently unclear what impact SII has on COPD. This study aims to explore the relationship between SII and COPD. Methods: This study analyzed patients with COPD aged ≥40 years from the National Health and Nutrition Examination Survey (NHANES) in the United States from 2013 to 2020. Restricted Cubic Spline (RCS) models were employed to investigate the association between Systemic immune-inflammation index (SII) and other inflammatory markers with COPD, including Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR). Additionally, a multivariable weighted logistic regression model was utilized to assess the relationship between SII, NLR and PLR with COPD. To assess the predictive values of SII, NLR, and PLR for COPD prevalence, receiver operating characteristic (ROC) curve analysis was conducted. The area under the ROC curve (AUC) was used to represent their predictive values. Results: A total of 10,364 participants were included in the cross-sectional analysis, of whom 863 were diagnosed with COPD. RCS models observed non-linear relationships between SII, NLR, and PLR levels with COPD risk. As covariates were systematically adjusted, it was found that only SII, whether treated as a continuous variable or a categorical variable, consistently remained positively associated with COPD risk. Additionally, SII (AUC = 0.589) slightly outperformed NLR (AUC = 0.581) and PLR (AUC = 0.539) in predicting COPD prevalence. Subgroup analyses revealed that the association between SII and COPD risk was stable, with no evidence of interaction. Conclusion: SII, as a novel inflammatory biomarker, can be utilized to predict the risk of COPD among adults aged 40 and above in the United States, and it demonstrates superiority compared to NLR and PLR. Furthermore, a non-linear association exists between SII and the increased risk of COPD.

6.
Front Public Health ; 11: 1276326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155897

RESUMEN

Background: The association between dietary patterns and depression has gained significant attention, but the relationship between fruit intake and depression remains unclear. This study aimed to investigate the role of fruit intake in the risk of depression using data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian randomization (MR) analysis, and further explore the causal relationship between them. Materials and methods: Cross-sectional analysis was conducted using the 2005-2018 NHANES data. Specialized weighted complex survey design analysis software was used for multivariate logistic analysis. Additionally, genetic variants for fruit intake and depression, as well as its related neuroticism traits, from the GWAS were used as instrumental variables in MR analysis. The inverse variance weighted (IVW) method was employed as the primary analysis method to evaluate the causal relationship between them. MR-Egger regression, MR-PRESSO test, and leave-one-out analysis were conducted to assess heterogeneity and pleiotropy. Results: In NHANES, compared to the lowest quartile (Q1, <0.12 cup], the highest quartile (Q4, >1.49 cups) of fruit intake showed a significant reduction in the risk of depression after adjusting for relevant covariates. Model 3, after rigorous adjustment for multiple covariates, demonstrated improved predictive performance in both Receiver operating characteristic (ROC) curve and Decision curve analysis (DCA). In Model 3, the proportion of reduced depression risk associated with fruit intake reached 31% (OR = 0.69, 95% CI: 0.50-0.95). This association remained significant in the MR analysis (OR = 0.92, 95% CI = 0.87-0.96; p = 5.09E-04). Fruit intake was also associated with a decreased risk of neuroticism traits related to depression, including feeling lonely (OR = 0.82, 95% CI = 0.74-0.90; p = 2.91E-05), feeling miserable (OR = 0.79, 95% CI = 0.72-0.87; p = 2.35E-06), feeling fed-up (OR = 0.75, 95% CI = 0.68-0.83; p = 2.78E-08), irritable mood (OR = 0.89, 95% CI = 0.79-0.99; p = 0.03), and neuroticism (OR = 0.85, 95% CI = 0.76-0.96; p = 9.94E-03). The causal relationship between feeling lonely and fruit intake was bidirectional. Conclusion: Increased fruit intake has a causal effect in reducing the risk of depression and is beneficial for related psychological well-being.


Asunto(s)
Depresión , Análisis de la Aleatorización Mendeliana , Estudios Transversales , Frutas , Encuestas Nutricionales
7.
BMC Public Health ; 23(1): 2335, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001456

RESUMEN

BACKGROUND: The association between exposure to environmental metals and chronic obstructive pulmonary disease (COPD) is preventing chronic lung diseases. However, little is currently known about the interaction between heavy metals and flavonoids in relation to the risk of COPD. This study aims to bridge this knowledge gap by leveraging The National Health and Nutrition Examination Survey (NHANES) database to evaluate thecorrelation between blood levels of heavy metals (cadmium, lead, mercury) and the intake of various flavonoid compounds (isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, flavonols, total flavonoids). Additionally, appropriate dietary recommendations are provided based on the study findings. MATERIALS AND METHODS: Cross-sectional analysis was conducted using the 2007-2010 and 2017-2018 NHANES data. Specialized weighted complex survey design analysis software was used for data analysis. Multivariate logistic regression models and restricted cubic splines (RCS) were used to evaluate the relationship between blood heavy metal levels, flavonoids intake, and COPD incidence in all participants, and to explore the effect of different levels of flavonoids intake on COPD caused by heavy metal exposure. RESULTS: A total of 7,265 adults aged ≥ 40 years were analyzed. Higher levels of blood cadmium (Cd), blood lead and Anthocyanidin (AC) intake were independently associated with an increased risk of COPD (Cd highest quantile vs. lowest: OR = 1.73, 95% CI, 1.25-2.3; Lead highest quantile vs. lowest quantile: OR = 1.44, 95% CI, 1.11-1.86; AC highest quantile vs. lowest: OR = 0.73, 95% CI, 0.54-0.99). When AC intake exceeded 11.56 mg/d, the effect of Cd exposure on COPD incidence decreased by 27%, and this finding was more significant in smokers. CONCLUSION: Higher levels of Cd (≥ 0.45ug/L) and lead (≥ 0.172 ug/L) were positively correlated with the risk of COPD among participants aged 40 years and above, while AC intake (≥ 11.56 mg/d) could reduce the risk related to blood Cd.


Asunto(s)
Metales Pesados , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Flavonoides , Encuestas Nutricionales , Cadmio , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
8.
Medicine (Baltimore) ; 102(39): e34690, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773823

RESUMEN

BACKGROUND: The causal associations between statin use and male sex hormone levels and related disorders have not been fully understood. In this study, we employed Mendelian randomization for the first time to investigate these associations. METHODS: In two-sample Mendelian randomization framework, genetic proxies for hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibition were identified as variants in the HMGCR gene that were associated with both levels of gene expression and low density lipoprotein cholesterol (LDL-C). We assessed the causal relationship between HMGCR inhibitor and 5 sex hormone levels/2 male-related diseases. Additionally, we investigated the association between 4 circulating lipid traits and outcomes. The "inverse variance weighting" method was used as the primary approach, and we assessed for potential heterogeneity and pleiotropy. In a secondary analysis, we revalidated the impact of HMGCR on 7 major outcomes using the summary-data-based Mendelian randomization method. RESULTS: Our study found a significant causal association between genetic proxies for HMGCR inhibitor and decreased levels of total testosterone (TT) (LDL-C per standard deviation = 38.7mg/dL, effect = -0.20, 95% confidence interval [CI] = -0.25 to -0.15) and bioavailable testosterone (BT) (effect = -0.15, 95% CI = -0.21 to -0.10). Obesity-related factors were found to mediate this association. Furthermore, the inhibitor were found to mediate a reduced risk of prostate cancer (odds ratio = 0.81, 95%CI = 0.7-0.93) by lowering bioavailable testosterone levels, without increasing the risk of erectile dysfunction (P = .17). On the other hand, there was a causal association between increased levels of LDL-C, total cholesterol, triglycerides (TG) and decreased levels of TT, sex hormone-binding globulin, and estradiol. CONCLUSIONS: The use of HMGCR inhibitor will reduce testosterone levels and the risk of prostate cancer without the side effect of erectile dysfunction. LDL-C, total cholesterol, and TG levels were protective factors for TT, sex hormone-binding globulin, and estradiol.


Asunto(s)
Disfunción Eréctil , Neoplasias de la Próstata , Humanos , Masculino , LDL-Colesterol , Globulina de Unión a Hormona Sexual , Oxidorreductasas , Análisis de la Aleatorización Mendeliana , Salud Reproductiva , Testosterona , Estradiol , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Hidroximetilglutaril-CoA Reductasas/genética
9.
Heliyon ; 9(8): e18498, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533997

RESUMEN

Purpose: Endocrine resistance hormone receptor-positive (HR+) advanced breast cancer (ABC) is generally insensitive to immunecheckpoint inhibitors (ICIs). This study sought to determine whether PI3Kδ inhibitor could enhance the sensitivity of endocrine resistance HR + advanced BC to ICIs by reducing immune evasion. Methods: Patient-derived HR + ABC xenografts were implanted into immune-humanized NSG mice and subsequently treated with YY20394 (PI3Kδ inhibitor) and camrelizumab. The mice were monitored for tumor progression, biochemical blood indicators, and peripheral blood T-cell subsets. The xenografted tumors were collected at the end of the treatment cycle and subjected to HE staining, immunohistochemistry and protein phosphorylation analysis. Besides, the xenografted tumors were also used to isolate primary breast cancer cells (BCCs) and regulatory T-cells (Tregs), which were subsequently used to evaluate drug sensitivity in vitro. Results: The humanized PDX model showed a favorable initial treatment response to camrelizumab combined with YY20394 and manageable toxicity. YY20394 plus camrelizumab showed a strong inhibitory effect on HR + BC in vivo mediated by suppression of Treg activity and an increased proportion of CD8+ T cells. Mice bearing tumors treated with YY20394 and camrelizumab had less invasion, mitotic figures, and ki67 expression, while having higher IL-12 expression compared with other groups. Mechanistically, YY20394 only effectively inhibited the PI3K pathway and proliferation activity in Tregs but not in BCCs. Conclusion: Our study suggests PI3Kδ inhibitor could the enhance the efficacy of ICIs in HR + BC PDX models by combating immune suppression and provides a feasible approach that may overcome the resistance of ICIs in HR + BC patients.

10.
JCI Insight ; 8(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37643018

RESUMEN

The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 ß-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Neoplasias Pancreáticas/patología , Páncreas/patología , Carcinoma Ductal Pancreático/patología , Receptores ErbB/genética , Metaplasia/patología , Sialiltransferasas/genética , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Antígenos CD
11.
Front Immunol ; 14: 1163987, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283760

RESUMEN

Introduction: Myeloid cells play a critical role in the pathogenesis of Inflammatory Bowel Diseases (IBDs), including Ulcerative Colitis (UC) and Crohn's Disease (CD). Dysregulation of the JAK/STAT pathway is associated with many pathological conditions, including IBD. Suppressors Of Cytokine Signaling (SOCS) are a family of proteins that negatively regulate the JAK/STAT pathway. Our previous studies identified that mice lacking Socs3 in myeloid cells developed a hyper-activated phenotype of macrophages and neutrophils in a pre-clinical model of Multiple Sclerosis. Methods: To better understand the function of myeloid cell Socs3 in the pathogenesis of colitis, mice with Socs3 deletion in myeloid cells (Socs3 ΔLysM) were utilized in a DSS-induced colitis model. Results: Our results indicate that Socs3 deficiency in myeloid cells leads to more severe colitis induced by DSS, which correlates with increased infiltration of monocytes and neutrophils in the colon and increased numbers of monocytes and neutrophils in the spleen. Furthermore, our results demonstrate that the expression of genes related to the pathogenesis and diagnosis of colitis such as Il1ß, Lcn2, S100a8 and S100a9 were specifically enhanced in Socs3-deficient neutrophils localized to the colon and spleen. Conversely, there were no observable differences in gene expression in Ly6C+ monocytes. Depletion of neutrophils using a neutralizing antibody to Ly6G significantly improved the disease severity of DSS-induced colitis in Socs3-deficient mice. Discussion: Thus, our results suggest that deficiency of Socs3 in myeloid cells exacerbates DSS-induced colitis and that Socs3 prevents overt activation of the immune system in IBD. This study may provide novel therapeutic strategies to IBD patients with hyperactivated neutrophils.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Sulfato de Dextran/toxicidad , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Células Mieloides/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
12.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291385

RESUMEN

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Microglía/metabolismo , Multiómica , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/genética , Fibrinógeno
13.
J Immunol ; 210(5): 609-617, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602931

RESUMEN

We have determined in mice the minimum composition required for forming a vaccine adjuvant that stimulates a regulatory T (Treg) cell response to immunization, and we named the adjuvant "complete tolerogenic adjuvant." This new kind of adjuvant may let us use the well-proven "Ag with adjuvant" form of immunization for inducing Treg cell-mediated Ag-specific immunosuppression. The minimum composition consists of dexamethasone, rapamycin, and monophosphoryl lipid A at a mass ratio of 8:20:3. By dissecting the respective role of each of these components during immunization, we have further shown why immunosuppressive and immunogenic agents are both needed for forming true adjuvants for Treg cells. This finding may guide the design of additional, and potentially more potent, complete tolerogenic adjuvants with which we may form numerous novel vaccines for treating immune diseases.


Asunto(s)
Linfocitos T Reguladores , Vacunas , Ratones , Animales , Inmunización , Adyuvantes Inmunológicos/farmacología , Inmunosupresores
14.
BMC Geriatr ; 22(1): 532, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764967

RESUMEN

BACKGROUND: The aim of this study was to investigate the associations of osteosarcopenic obesity (OSO) and its components with complete blood cell count-derived inflammation indices. METHODS: In this cross-sectional study, data of 648 participants aged ≥60 years (men/women: 232/416, mean age: 67.21 ± 6.40 years) were collected from January 2018 to December 2020. Areal bone mineral density and body fat percentage were used to define osteopenia/osteoporosis and obesity, respectively. The criteria of the 2019 Asian Working Group for Sarcopenia were used to diagnose sarcopenia. Based on the number of these conditions, participants were divided into four groups: OSO/0, OSO/1, OSO/2, and OSO/3. Logistic regression analysis was conducted to identify associations between blood cell count-derived inflammation indices and the number of disorders with abnormal body composition. RESULTS: Systemic inflammation response index (SIRI), white blood cells, neutrophil-to-lymphocyte ratio (NLR), aggregate inflammation systemic index (AISI), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) showed statistically significant differences among the four groups (P < 0.05). Unlike in the OSO/0 group, in all other groups, AISI, SIRI, PLR, and NLR were significantly associated with increased likelihood of having multiple disorders with abnormal body composition after adjustment for confounders (P < 0.0001 for all). However, LMR showed an inverse correlation with the number of these conditions (P < 0.05). CONCLUSION: Higher SIRI, AISI, NLR, and PLR values and lower LMR values are closely associated with OSO and its individual components-osteoporosis, sarcopenia, and obesity-in older adults, suggesting that the value of these indices in the evaluation of OSO warrants further investigation.


Asunto(s)
Osteoporosis , Sarcopenia , Anciano , Recuento de Células Sanguíneas , China/epidemiología , Estudios Transversales , Femenino , Humanos , Inflamación/diagnóstico , Inflamación/epidemiología , Masculino , Obesidad/complicaciones , Obesidad/diagnóstico , Obesidad/epidemiología , Osteoporosis/complicaciones , Osteoporosis/diagnóstico , Osteoporosis/epidemiología , Sarcopenia/diagnóstico , Sarcopenia/epidemiología
15.
Toxins (Basel) ; 13(11)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34822615

RESUMEN

Aspergillus flavus poses a threat to society economy and public health due to aflatoxin production. aflN is a gene located in the aflatoxin gene cluster, but the function of AflN is undefined in Aspergillus flavus. In this study, aflN is knocked out and overexpressed to study the function of AflN. The results indicated that the loss of AflN leads to the defect of aflatoxin biosynthesis. AflN is also found to play a role in conidiation but not hyphal growth and sclerotia development. Moreover, AlfN is related to the response to environmental oxidative stress and intracellular levels of reactive oxygen species. At last, AflN is involved in the pathogenicity of Aspergillus flavus to host. These results suggested that AflN played important roles in aflatoxin biosynthesis, conidiation and reactive oxygen species generation in Aspergillus flavus, which will be helpful for the understanding of aflN function, and will be beneficial to the prevention and control of Aspergillus flavus and aflatoxins contamination.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Aflatoxinas/genética , Aspergillus flavus/patogenicidad , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
16.
bioRxiv ; 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34671772

RESUMEN

Blood clots are a central feature of coronavirus disease-2019 (COVID-19) and can culminate in pulmonary embolism, stroke, and sudden death. However, it is not known how abnormal blood clots form in COVID-19 or why they occur even in asymptomatic and convalescent patients. Here we report that the Spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the blood coagulation factor fibrinogen and induces structurally abnormal blood clots with heightened proinflammatory activity. SARS-CoV-2 Spike virions enhanced fibrin-mediated microglia activation and induced fibrinogen-dependent lung pathology. COVID-19 patients had fibrin autoantibodies that persisted long after acute infection. Monoclonal antibody 5B8, targeting the cryptic inflammatory fibrin epitope, inhibited thromboinflammation. Our results reveal a procoagulant role for the SARS-CoV-2 Spike and propose fibrin-targeting interventions as a treatment for thromboinflammation in COVID-19. ONE-SENTENCE SUMMARY: SARS-CoV-2 spike induces structurally abnormal blood clots and thromboinflammation neutralized by a fibrin-targeting antibody.

17.
Neuron ; 109(15): 2363-2365, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34352209

RESUMEN

In this issue of Neuron, Shi et al. (2021) show a protective role for the low-density lipoprotein receptor (LDLR) in tau pathology. Brain overexpression of LDLR lowers apolipoprotein E (apoE), suppresses microglial activation, preserves myelin, and ameliorates neurodegeneration, pointing the way toward potential new therapies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Encéfalo/metabolismo , Humanos , Lipoproteínas LDL , Receptores de LDL/genética , Receptores de LDL/metabolismo , Tauopatías/genética
18.
Brain ; 144(8): 2291-2301, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34426831

RESUMEN

Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Receptores de Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Oligodendroglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Barrera Hematoencefálica/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ratones , Ratones Transgénicos , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Quinolinas/farmacología , Médula Espinal/metabolismo
19.
STAR Protoc ; 2(3): 100638, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34258598

RESUMEN

Deposition of the blood coagulation factor fibrinogen in the central nervous system is a hallmark of neurological diseases with blood-brain barrier disruption. We describe in vivo two-photon imaging of microglial responses and neuronal spine elimination to either intracortical microinjection of fibrinogen in healthy mice or to endogenously labeled fibrinogen deposits in Alzheimer's disease mice. This protocol allows the longitudinal study of glial and neuronal responses to blood proteins and can be used to test drug efficacy at the neurovascular interface. For complete details on the use and execution of this protocol, please refer to Davalos et al. (2012), Ryu et al. (2018), and Merlini et al. (2019).


Asunto(s)
Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Fibrinógeno/metabolismo , Microglía/metabolismo , Microscopía/métodos , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Colorantes Fluorescentes/química , Ratones , Fotones
20.
Artículo en Inglés | MEDLINE | ID: mdl-34301818

RESUMEN

OBJECTIVE: To determine the activation status and cytokine profiles of CD4+ T cells, CD8+ T cells, and CD19+ B cells from patients with early-stage Parkinson disease (PD) compared with healthy controls (HCs). METHODS: Peripheral blood samples from 41 patients with early-stage PD and 40 HCs were evaluated. Peripheral blood mononuclear cells were analyzed by flow cytometry for surface markers and intracellular cytokine production. Correlations of immunologic changes and clinical parameters were analyzed. RESULTS: Adaptive immunity plays a role in the pathogenesis of PD, yet the contribution of T cells and B cells, especially cytokine production by these cells, is poorly understood. We demonstrate that naive CD4+ and naive CD8+ T cells are significantly decreased in patients with PD, whereas central memory CD4+ T cells are significantly increased in patients with PD. Furthermore, IL-17-producing CD4+ Th17 cells, IL-4-producing CD4+ Th2 cells, and IFN-γ-producing CD8+ T cells are significantly increased in patients with PD. Regarding B cells, we observed a decrease in naive B cells and an increase in nonswitched memory and double-negative B cells. As well, TNF-α-producing CD19+ B cells were significantly increased in patients with PD. Notably, some of the changes observed in CD4+ T cells and B cells were associated with clinical motor disease severity. CONCLUSIONS: These findings suggest that alterations in the adaptive immune system may promote clinical disease in PD by skewing to a more proinflammatory state in the early-stage PD patient cohort. Our study may shed light on potential immunotherapies targeting dysregulated CD4+ T cells, CD8+ T cells, and CD19+ B cells in patients with PD.


Asunto(s)
Inmunidad Adaptativa , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/sangre , Citocinas/inmunología , Femenino , Humanos , Mediadores de Inflamación/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...