Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.274
Filtrar
1.
Lasers Surg Med ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840573
2.
Int Med Case Rep J ; 17: 555-563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831931

RESUMEN

Background: Hyperthermia and multiple organ dysfunction syndrome (MODS) are the main characteristics of heatstroke and COVID-19. Differentiating between these illnesses is crucial during a summer COVID-19 pandemic, but cases of heatstroke comorbid with COVID-19 are rarely reported. Case description: We report the first case of heatstroke comorbid with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in a 52-year-old male. After receiving intravenous antibiotics, organ protection measures, and treatment for coagulation disorders, his fever and coma resolved. However, he developed dyspnea and cerebral hemorrhage after several days. This patient experienced a multi-pathogen pulmonary infection and an intractable coagulopathy that ultimately resulted in MODS and death. Conclusion: The combination of heatstroke and SARS-CoV-2 infection exacerbated inflammation, immune abnormalities, and coagulation disorders. The interaction between inflammation and coagulation disturbances contributed to the underlying mechanism in this case, highlighting the importance of early anti-infection, treatment for coagulopathy, immune regulation, and organ protection as crucial interventions.

3.
Se Pu ; 42(6): 555-563, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38845516

RESUMEN

Mitochondria perform various metabolic processes that significantly affect cell differentiation, proliferation, signal transduction, and programmed cell death. The disruption of mitochondrial bioenergetic and metabolic functions is closely related to many disorders. The specific isolation and purification of intact, high-purity, and functional mitochondria are central to the understanding of their mechanism of action but remain challenging tasks. In this study, a mitochondrial penetrating peptide (MPP) with the sequence FrFKFrFK(Ac) was used as a mitochondrial recognition motif to construct a peptide-guided affinity separation material. The multiple aromatic phenylalanine (F) residues in this amphiphilic peptide can confer lipophilicity to the mitochondrial membrane, whereas the basic residues (D-arginine and lysine) render the MPP surface positively charged, thereby promoting the binding of negatively charged mitochondria. After the derivatization of the N terminal of MPP with an oligoglycine spacer, the peptide ligands were conjugated to matrix beads (MB) with surface aldehyde functional groups. Peptide functionalization was performed via a condensation reaction between the amino group in the peptide ligand and the aldehyde group on the beads. The generated Schiff bases were reduced, affording stable covalent bonds. The dense and stable functionalization of the beads with the mitochondria-targeting peptides was demonstrated using high performance liquid chromatography (HPLC), zeta potential assay, and scanning electron microscopy (SEM). The immobilization efficiency of the peptide ligands was 1.47 µmol/g, and the surface potential of MB@MPP was 11 mV. MB@MPP was used for the direct isolation of mitochondria after cell homogenization. As observed by SEM, mitochondria with a cross-sectional diameter of 500 nm were efficiently captured on the MB@MPP surface. Because the mitochondrial membrane potential is an important marker of mitochondrial function and the driving force behind the staining of mitochondria with Mito Tracker dyes, the specific binding and separation of fluorescent mitochondria from the cell samples revealed that the proposed MB@MPP-based isolation approach can keep mitochondria intact and retain their functions. Western blot assays were employed to characterize the protein markers of the mitochondria (citrate synthase (CS) and voltage-dependent anion channel protein (VDAC)) and cytoplasmic protein (vinculin), and examine the integrity and purity of the captured mitochondria. The results showed that the lysates released from MB@MPP had high CS and VDAC contents. By contrast, vinculin, which is highly abundant in whole-cell lysates, was barely detected in the lysates from MB@MPP. These results suggest that MB@MPP isolates mitochondria with high affinity, specificity, and antifouling ability by using the targeting peptide as the capture handle. A comparison with a commercial mitochondrial isolation kit demonstrated that MB@MPP can separate mitochondria with higher CS and VDAC abundance and purity. Given the superior separation performance of MB@MPP, the molecular profiles of the isolated mitochondria under stress were subjected to further analysis of their molecular profiles under stress. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established to detect tryptophan (Trp) and riboflavin in the mitochondria. Quantification was performed in multiple-reaction monitoring (MRM) mode. Owing to the high purity of the mitochondria, the Trp and riboflavin contents were determined to be 265 and 0.67 nmol/mg, respectively. The metabolic response of mitochondria to external stimuli was further examined using acadesine, an adenosine 5'-monophosphate (AMP)-activated protein kinase activator with a wide range of metabolic effects, to treat cells. After cell homogenization, MB@MPP was used to separate the mitochondria from the cell samples with and without acadesine treatment, followed by LC-MS/MS analysis. The quantification results demonstrated that acadesine induced a 14% upregulation of Trp content in the mitochondria. By contrast, the riboflavin content decreased to 0.48 nmol/mg, which is 72% of that in untreated mitochondria. The changes in Trp and riboflavin contents could influence their metabolic pathways and, thus, the levels of their metabolites, such as nicotinamide adenine dinucleotide, flavin mononucleotide, and flavin adenine dinucleotide, which are essential coenzymes in mitochondria. Peptide-functionalized affinity microbeads with high affinity and specificity for mitochondria are promising for the efficient isolation of high-quality mitochondria, and offer a useful tool for understanding the complicated functions and dynamics of this unique organelle.


Asunto(s)
Mitocondrias , Péptidos , Mitocondrias/metabolismo , Péptidos/química , Péptidos/aislamiento & purificación , Animales , Cromatografía de Afinidad
4.
Fa Yi Xue Za Zhi ; 40(2): 179-185, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38847034

RESUMEN

OBJECTIVES: To detect the expression changes of interleukin-10 (IL-10) and transforming growth factor-ß1 (TGF-ß1) during the development of deep vein thrombosis in mice, and to explore the application value of them in thrombus age estimation. METHODS: The mice in the experimental group were subjected to ligation of inferior vena cava. The mice were sacrificed by excessive anesthesia at 1 d, 3 d, 5 d, 7 d, 10 d, 14 d and 21 d after ligation, respectively. The inferior vena cava segment with thrombosis was extracted below the ligation point. The mice in the control group were not ligated, and the inferior vena cava segment at the same position as the experimental group was extracted. The expression changes of IL-10 and TGF-ß1 were detected by immunohistochemistry (IHC), Western blotting and real-time qPCR. RESULTS: IHC results revealed that IL-10 was mainly expressed in monocytes in thrombosis and TGF-ß1 was mainly expressed in monocytes and fibroblast-like cells in thrombosis. Western blotting and real-time qPCR showed that the relative expression levels of IL-10 and TGF-ß1 in each experimental group were higher than those in the control group. The mRNA and protein levels of IL-10 reached the peak at 7 d and 10 d after ligation, respectively. The mRNA expression level at 7 d after ligation was 4.72±0.15 times that of the control group, and the protein expression level at 10 d after ligation was 7.15±0.28 times that of the control group. The mRNA and protein levels of TGF-ß1 reached the peak at 10 d and 14 d after ligation, respectively. The mRNA expression level at 10 d after ligation was 2.58±0.14 times that of the control group, and the protein expression level at 14 d after ligation was 4.34±0.19 times that of the control group. CONCLUSIONS: The expressions of IL-10 and TGF-ß1 during the evolution of deep vein thrombosis present time-dependent sequential changes, and the expression levels of IL-10 and TGF-ß1 can provide a reference basis for thrombus age estimation.


Asunto(s)
Modelos Animales de Enfermedad , Inmunohistoquímica , Interleucina-10 , Factor de Crecimiento Transformador beta1 , Vena Cava Inferior , Trombosis de la Vena , Animales , Interleucina-10/metabolismo , Interleucina-10/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Trombosis de la Vena/metabolismo , Trombosis de la Vena/etiología , Ratones , Vena Cava Inferior/metabolismo , Vena Cava Inferior/patología , Masculino , Factores de Tiempo , Monocitos/metabolismo , Western Blotting , ARN Mensajero/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Ligadura , Fibroblastos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38856887

RESUMEN

OBJECTIVE: Chronic neck pain, a prevalent health concern characterized by frequent recurrence, requires exploration of treatment modalities that provide sustained relief. This systematic review and meta-analysis aimed to evaluate the durable effects of acupuncture on chronic neck pain. METHODS: We conducted a literature search up to March 2024 in six databases, including PubMed, Embase, and the Cochrane Library, encompassing both English and Chinese language publications. The main focus of evaluation included pain severity, functional disability, and quality of life, assessed at least 3 months post-acupuncture treatment. The risk of bias assessment was conducted using the Cochrane Risk of Bias 2.0 tool, and meta-analyses were performed where applicable. RESULTS: Eighteen randomized controlled trials were included in the analysis. Acupuncture as an adjunct therapy could provide sustained pain relief at three (SMD: - 0.79; 95% CI - 1.13 to - 0.46; p < 0.01) and six (MD: - 18.13; 95% CI - 30.18 to - 6.07; p < 0.01) months post-treatment. Compared to sham acupuncture, acupuncture did not show a statistically significant difference in pain alleviation (MD: - 0.12; 95% CI - 0.06 to 0.36; p = 0.63). However, it significantly improved functional outcomes as evidenced by Northwick Park Neck Pain Questionnaire scores 3 months post-treatment (MD: - 6.06; 95% CI - 8.20 to - 3.92; p < 0.01). Although nine studies reported an 8.5%-13.8% probability of adverse events, these were mild and transitory adverse events. CONCLUSION: Acupuncture as an adjunct therapy may provide post-treatment pain relief lasting at least 3 months for patients with chronic neck pain, although it is not superior to sham acupuncture, shows sustained efficacy in improving functional impairment for over 3 months, with a good safety profile.

6.
Front Pharmacol ; 15: 1376494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846098

RESUMEN

Objective: Sphingosine-1-phosphate receptor (S1PR) modulators have recently attracted increasing attention for the treatment of multiple sclerosis (MS). Despite their preference in the clinic, multiple adverse events (AEs) continue to be reported every year. This study aimed to investigate the potential AEs as well as related important medical events (IMEs) signal associated with S1PR modulators, including fingolimod, siponimod and ozanimod in a real-world study using the FDA Adverse Event Reporting System (FAERS) database. Methods: All data were collected from the FAERS database, spanning from the fourth quarter of 2010(2010Q4) to the second quarter of 2023 (2023Q2). Potential AE and IME signals of S1PR modulators were identified based on a disproportionality analysis using the reporting odds ratio (ROR), proportional reporting ratio (PRR), and the bayesian confidence propagation neural network of information components (IC). Results: Overall, 276,436 reports of fingolimod, 20,972 reports of siponimod and 10,742 reports of ozanimod were analyzed from the FAERS database. Among reports, females were more prone to develop AEs (73.71% for females vs. 23.21% for males), and more than 50% of patients suffered from AEs were between 18 and 64 years. Subsequently, we investigated the top 20 AEs associated with the signal strength of S1PR modulators at the preferred term (PT) level, and identified 31 (8 vs. 11 vs. 12, respectively) unlabeled risk signals such as thrombosis, uterine disorder and reproductive system and breast disorders. Furthermore, we discovered that the S1PR modulator reported variations in the possible IMEs, and that the IMEs associated with ocular events were reported frequently. It's interesting to note that infection and malignancy are prominent signals with both fingolimod and siponimod in the top 20 PTs related to mortality reports. Conclusion: The present investigation highlights the possible safety risks associated with S1PR modulators. The majority of AEs are generally consistent with previous studies and are mentioned in the prescribing instructions, however, several unexpected AE signals have also been observed. Ozanimod showed the lowest signal intensity and a better safety profile than the other S1PR modulators. Due to the short marketing time of drugs and the limitations of spontaneous reporting database, further research is required to identify potential AEs related to S1PR modulators.

7.
J Hazard Mater ; 474: 134816, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38850928

RESUMEN

Polyethylene microplastics (PE MPs) are the main MPs in agricultural soils and undergo oxidation upon environmental exposure. However, the influence of MP oxidation on phytotoxicity (especially for crop fruit) is still limited. This study aimed to explore the effect of PE MP oxidation on crop toxicity. Herein, a combination of plant phenotyping, metabolomic, and transcriptomic approaches was used to evaluate the effects of low-oxidation PE (LOPE) and high-oxidation PE (HOPE) on wheat growth, grain quality, and related molecular mechanisms using pot experiments. The results showed that HOPE induced a stronger inhibition of wheat growth and reduction in protein content and mineral elements than LOPE. This was accompanied by root ultrastructural damage and downregulation of carbohydrate metabolism, translation, nutrient reservoir activity, and metal ion binding gene expression. Compared with HOPE, LOPE activated a stronger plant defense response by reducing the starch content by 22.87 %, increasing soluble sugar content by 44.93 %, and upregulating antioxidant enzyme genes and crucial metabolic pathways (e.g., starch and sucrose, linoleic acid, and phenylalanine metabolism). The presence of PE MPs in the environment exacerbates crop growth inhibition and fruit quality deterioration, highlighting the need to consider the environmental and food safety implications of MPs in agricultural soils.

8.
Cell Death Dis ; 15(6): 398, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844470

RESUMEN

In chronic kidney disease (CKD), renal fibrosis is an unavoidable result of various manifestations. However, its pathogenesis is not yet fully understood. Here, we revealed the novel role of Homeobox D10 (HOXD10) in CKD-related fibrosis. HOXD10 expression was downregulated in CKD-related in vitro and in vivo fibrosis models. UUO model mice were administered adeno-associated virus (AAV) containing HOXD10, and HOXD10 overexpression plasmids were introduced into human proximal tubular epithelial cells induced by TGF-ß1. The levels of iron, reactive oxygen species (ROS), lipid ROS, the oxidized glutathione/total glutathione (GSSG/GSH) ratio, malonaldehyde (MDA), and superoxide dismutase (SOD) were determined using respective assay kits. Treatment with AAV-HOXD10 significantly attenuated fibrosis and renal dysfunction in UUO model mice by inhibiting NOX4 transcription, ferroptosis pathway activation, and oxidative stress. High levels of NOX4 transcription, ferroptosis pathway activation and profibrotic gene expression induced by TGF-ß1/erastin (a ferroptosis agonist) were abrogated by HOXD10 overexpression in HK-2 cells. Moreover, bisulfite sequencing PCR result determined that HOXD10 showed a hypermethylated level in TGF-ß1-treated HK-2 cells. The binding of HOXD10 to the NOX4 promoter was confirmed by chromatin immunoprecipitation (ChIP) analysis and dual-luciferase reporter assays. Targeting HOXD10 may represent an innovative therapeutic strategy for fibrosis treatment in CKD.


Asunto(s)
Ferroptosis , Fibrosis , Proteínas de Homeodominio , NADPH Oxidasa 4 , Insuficiencia Renal Crónica , Ferroptosis/genética , Animales , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Humanos , Ratones , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/genética , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Riñón/patología , Riñón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Línea Celular
9.
Front Plant Sci ; 15: 1360173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751839

RESUMEN

Tobacco (Nicotiana tabacum L.) bacterial wilt, caused by Ralstonia solanacearum, is indeed a highly destructive plant disease, leading to substantial damage in tobacco production. While biological control is considered an effective measure for managing bacterial wilt, related research in this area has been relatively limited compared to other control methods. In order to discover new potential antagonistic bacteria with high biocontrol efficacy against tobacco bacterial wilt, we conducted an analysis of the microbial composition differences between disease-suppressive and disease-conducive soils using Illumina sequencing. As a result, we successfully isolated six strains from the disease-suppressive soil that exhibited antibacterial activity against Ralstonia solanacearum. Among these strains, B4-7 showed the strongest antibacterial activity, even at acidic conditions with a pH of 4.0. Based on genome analysis using Average Nucleotide Identity (ANI), B4-7 was identified as Bacillus velezensis. In greenhouse and field trials, strain B4-7 significantly reduced the disease index of tobacco bacterial wilt, with control efficiencies reaching 74.03% and 46.88% respectively. Additionally, B4-7 exhibited plant-promoting abilities that led to a 35.27% increase in tobacco production in field conditions. Quantitative real-time (qPCR) analysis demonstrated that strain B4-7 effectively reduced the abundance of R. solanacearum in the rhizosphere. Genome sequencing and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed that strain B4-7 potentially produces various lipopeptide metabolites, such as microlactin, bacillaene, difficidin, bacilysin, and surfactin. Furthermore, B4-7 influenced the structure of the rhizosphere soil microbial community, increasing bacterial abundance and fungal diversity, while also promoting the growth of different beneficial microorganisms. In addition, B4-7 enhanced tobacco's resistance to R. solanacearum by increasing the activities of defense enzymes, including superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Collectively, these findings suggest that B. velezensis B4-7 holds significant biocontrol potential and can be considered a promising candidate strain for eco-friendly management of tobacco bacterial wilt.

10.
Adv Physiol Educ ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695082

RESUMEN

Embedding clinically relevant learning experience to basic science subjects is desired for the preclinical phase of the undergraduate medical education. The present study aims to modify case-based learning (CBL) with role-playing situational teaching method and assess the student feedback and learning effect. 176 sophomore students majoring in clinical medicine from Harbin Medical University were randomly divided into two groups: the control group (n=90) who received the traditional hybrid teaching, and the experimental group (n=86), who received the role-playing situational teaching. Students in the experimental group were given a one-week pre-class preparation to dramatize a hyperthyroidism scenario through online autonomous learning of thyroid physiology, and performed the patient's consultation process in class, followed by a student presentation about key points of lecture content and a question-driven discussion. A posttest and questionnaire survey were conducted after class. The test scores of the two groups had no statistical differences, whereas the rate of excellence (high scores) of the experimental group was significantly higher than that of the control group. Furthermore, the record of online self-directed learning engagements was significantly improved in the experimental group. In the questionnaire, more than 70% of the students showed positive attitudes towards the role-playing situational teaching method and were willing to participate in other chapters of the physiology course. Such results show that CBL supported by role-playing situational teaching method encourages active learning and improves the application of basic knowledge of physiology, which can be incorporated in the preclinical curriculums to bridge the gap between theory and practice.

12.
MedComm (2020) ; 5(6): e547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764726

RESUMEN

Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38772517

RESUMEN

OBJECTIVE: To compare adverse health events in intervention versus control group participants in the Community Participation Transition after Stroke trial to reduce barriers to independent living for community-dwelling stroke survivors. DESIGN: Randomized controlled trial. SETTING: Inpatient rehabilitation (IR) to home and community transition. PARTICIPANTS: Stroke survivors aged ≥50 years being discharged from IR who had been independent in activities of daily living pre-stroke (n=183). INTERVENTION: Participants randomized to intervention (n=85) received home modifications and self-management training from an occupational therapist over 4 visits in the home. Participants randomized to control (n=98) received the same number of visits consisting of stroke education. MAIN OUTCOME MEASURES: Death, skilled nursing facility (SNF) admission, 30-day rehospitalization, fall rates after discharge from IR. RESULTS: Time-to-event analysis revealed that the intervention reduced SNF admission (cumulative survival 87.8%, 95% confidence interval [CI] 78.6% to 96.6%%) and death (cumulative survival 100%) compared to the control group (SNF cumulative survival 78.9%, 95% CI 70.4% to 87.4%; P=0.039; death cumulative survival 87.3%, 95% CI 79.9% to 94.7%, P=0.001). Thirty-day rehospitalization also appeared lower among intervention participants (cumulative survival 95.1%, 95% CI 90.5% to 99.8%) compared to control participants (cumulative survival 86.3%, 95% CI 79.4% to 93.2%, P=0.050) but was not statistically significant. Fall rates did not significantly differ between the intervention group (5.6 falls per 1000 participant-days, 95% CI 4.7 to 6.5) and the control group (7.2 falls per 1000 participant-days, 95% CI 6.2 to 8.3; incidence rate ratio [IRR] 0.78, 95% CI 0.46 to 1.33, P=0.361). CONCLUSIONS: A home-based OT-led intervention that helps stroke survivors transition home by reducing barriers in the home and improving self-management could decrease the risk of mortality and SNF admission after discharge from rehabilitation.

14.
Mol Neurobiol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780721

RESUMEN

Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia. In the present study, we used molecular dynamics simulation and nuclear magnetic resonance to detect the interaction between PRDX1 and a specific interfering peptide. We used behavioral, morphological, and molecular experimental methods to demonstrate the effect of PRDX1-peptide on cerebral ischemia-reperfusion (I/R) in mice and to investigate the related mechanism. We found that PRDX1-peptide bound specifically to PRDX1 and improved motor and cognitive functions in I/R mice. In addition, pretreatment with PRDX1-peptide reduced the infarct area and decreased the number of apoptotic cells in the penumbra. Furthermore, PRDX1-peptide inhibited microglial activation and downregulated proinflammatory cytokines including IL-1ß, IL-6, and TNF-α through inhibition of the TLR4/NF-κB signaling pathway, thereby attenuating ischemic brain injury. Our findings clarify the precise mechanism underlying PRDX1-induced inflammation after ischemic stroke and suggest that the PRDX1-peptide can significantly alleviate the postischemic inflammatory response by interfering with PRDX1 amino acids 70-90 and thereby inhibiting the TLR4/NF-κB signaling pathway. Our study provides a theoretical basis for a new therapeutic strategy to treat ischemic stroke.

15.
J Exp Clin Cancer Res ; 43(1): 140, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730468

RESUMEN

BACKGROUND: PTEN loss has been identified in various tumor types and is linked to unfavorable clinical outcomes. In addition to PTEN mutation, multiple mechanisms contribute to PTEN loss during tumor development. However, the natural selection process of PTEN-deficient tumor cells remains unclear. Here, we aimed at further elucidating the role of PTEN-L in tumor progression. METHODS: PTEN knockout cell lines were generated using CRISPR/Cas9 technology. Ni-NTA affinity column chromatography was employed for PTEN-L purification. Tumor cell metastasis was evaluated in murine models and observed using the IVIS Spectrum Imaging System. RNA-sequencing, western blotting, PCR, flow cytometry, and cell proliferation assays were employed to investigate tumor cell dormancy and related mechanisms. RESULTS: The chemotherapeutic drugs, cisplatin, paclitaxel, and doxorubicin, induced tumor cells to secrete PTEN-long (PTEN-L), which shields PTEN-deficient tumor cells from chemotherapy-induced apoptosis better than it shields PTEN-intact cells. Further investigation revealed that PTEN-L treatment induced dormancy in PTEN-null tumor cells, characterized by an increase in p16 and p27 levels, cell-cycle arrest, reduced cell proliferation, and enhanced DNA repair. Furthermore, PTEN-L treatment selectively promoted the accumulation and growth of PTEN-null tumor cells in the lungs of C57BL/6J mice, while evading immune surveillance. Mechanistically, PTEN-L induced dormancy in PTEN-null tumor cells by activating the p38 signaling pathway. Addition of a p38 inhibitor effectively reversed dormancy and growth of PTEN-deficient tumor cells in the lungs. We also demonstrated that PTEN expression played a pivotal role in determining the outcome of PTEN-L-mediated antitumor therapy. CONCLUSIONS: In summary, PTEN-L was identified as a potent inducer of dormancy in PTEN-deficient tumor cells, which increased their efficient selection within the tumor microenvironment.


Asunto(s)
Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Animales , Ratones , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Proliferación Celular , Apoptosis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética
16.
Cancer Sci ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705575

RESUMEN

Persistent activation of estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in driving the progression of estrogen receptor positive (ER+) breast cancer (BC). In the current study, LINC00173, a long non-coding RNA, was found to bind both ERα and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFα) factor (LITAF), then cooperatively to inhibit ERα protein degradation by impeding the nuclear export of ERα. Concurrently, LITAF was found to attenuate TNFα transcription after binding to LINC00173, and this attenuating transcriptional effect was quite significant under lipopolysaccharide stimulation. Distinct functional disparities between estrogen subtypes emerge, with estradiol synergistically promoting ER+ BC cell growth with LINC00173, while estrone (E1) facilitated LITAF-transcriptional activation. In terms of therapeutic significance, silencing LINC00173 alongside moderate addition of E1 heightened TNFα and induced apoptosis, effectively inhibiting ER+ BC progression.

17.
Nutrients ; 16(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38794718

RESUMEN

OBJECTIVE: This study investigated the association of circulating levels of 25-hydroxyvitamin D (25[OH]D) with the risk of metabolic syndrome (MetS) and its components in adults. METHODS: This nationwide cohort involved 23,810 Chinese adults attending annual health evaluations. Serum 25(OH)D levels, MetS status, and covariates were determined at each examination. Among them, 8146, 3310, and 1971 completed two, three, and more than three evaluations, respectively. A hybrid mixed-effects and Cox regression model was employed to determine the cross-sectional and longitudinal relationships. RESULTS: The odds ratios (ORs) and 95% confidence intervals (CIs) of MetS were significantly lower in individuals within quartile 4 (vs. 1) of serum 25(OH)D for both between-individual (0.43 [0.35, 0.52]) and within-individual comparisons (0.60 [0.50, 0.73]), respectively (all p-trends < 0.001). Among the MetS components, the corresponding ORs (95% CI) in between- and within-individual comparisons were 0.40 (0.29, 0.54) and 0.26 (0.19, 0.36) for abdominal obesity, 0.49 (0.41, 0.58) and 0.78 (0.66, 0.93) for high triglycerides, 0.70 (0.59, 0.82) and 0.75 (0.64, 0.87) for hypertriglyceridemia, 0.48 (0.39, 0.59) and 0.87 (0.71, 1.07) for low HDL cholesterol, and 0.92 (0.76, 1.12) and 0.49 (0.41, 0.59) for hypertension, respectively. Decreased hazard ratios (95% CIs) in quartile 4 (vs. 1) of 25(OH)D were found for MetS (0.80 [0.65, 1.00]), high triglycerides (0.76 [0.62, 0.92]), abdominal obesity (0.77 [0.63, 0.96]), and low HDL cholesterol (0.64 [0.50, 0.81]). CONCLUSIONS: Decreased concentrations of serum 25(OH)D correlate significantly to a heightened MetS risk and specific components. Our findings underscore the potential preventive function of circulating vitamin D concerning metabolic disorders.


Asunto(s)
Síndrome Metabólico , Vitamina D , Humanos , Síndrome Metabólico/sangre , Síndrome Metabólico/epidemiología , Vitamina D/sangre , Vitamina D/análogos & derivados , Masculino , Femenino , Estudios Longitudinales , Persona de Mediana Edad , China/epidemiología , Adulto , Estudios Transversales , Factores de Riesgo , Obesidad Abdominal/sangre , Obesidad Abdominal/epidemiología , Pueblo Asiatico , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/sangre , Anciano , Oportunidad Relativa , Pueblos del Este de Asia
18.
Phytomedicine ; 130: 155717, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38810550

RESUMEN

Heart failure is a life-threatening cardiovascular disease and characterized by cardiac hypertrophy, inflammation and fibrosis. The traditional Chinese medicine formula Qiangxinyin (QXY) is effective for the treatment of heart failure while the underlying mechanism is not clear. This study aims to identify the active ingredients of QXY and explore its mechanisms protecting against cardiac hypertrophy. We found that QXY significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy and dysfunction in zebrafish. Eight compounds, including benzoylmesaconine (BMA), atractylenolide I (ATL I), icariin (ICA), quercitrin (QUE), psoralen (PRN), kaempferol (KMP), ferulic acid (FA) and protocatechuic acid (PCA) were identified from QXY. PRN, KMP and icaritin (ICT), an active pharmaceutical ingredient of ICA, prevented ISO-induced cardiac hypertrophy and dysfunction in zebrafish. In H9c2 cardiomyocyte treated with ISO, QXY significantly blocked the calcium influx, reduced intracellular lipid peroxidative product MDA, stimulated ATP production and increased mitochondrial membrane potential. QXY also inhibited ISO-induced cardiomyocyte hypertrophy and cytoskeleton reorganization. Mechanistically, QXY enhanced the phosphorylation of Smad family member 2 (SMAD2) and myosin phosphatase target subunit-1 (MYPT1), and suppressed the phosphorylation of myosin light chain (MLC). In conclusion, PRN, KMP and ICA are the main active ingredients of QXY that protect against ISO-induced cardiac hypertrophy and dysfunction largely via the blockage of calcium influx and inhibition of mitochondrial dysfunction as well as cytoskeleton reorganization.

19.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2783-2797, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812179

RESUMEN

Dihuang Baoyuan Granules is a prescription endorsed by HU Tianbao, a renowned and elderly Chinese medicine practitioner from Beijing, and has demonstrated definite clinical efficacy. The composition of this prescription is intricate as it includes 7 distinct herbal medicines. This study aims to analyze the chemical composition of Dihuang Baoyuan Granules, evaluate its efficacy in the treatment of diabetes and analyze the distribution of the drug components in the plasma, liver, and kidney after administration. The findings will serve as a reference for future research on pharmacodynamic substances of this prescription. UHPLC-LTQ-Orbitrap MS was employed to analyze the main chemical components of Dihuang Baoyuan Granules. A Waters ACQUITY Premier HSS T3 column(2.1 mm×100 mm, 1.8 µm) was used for chromatographic separation with 0.1% formic acid(A)-acetonitrile(B) as the mobile phases in a gradient elution at a flow rate of 0.3 mL·min~(-1). Electrospray ionization(ESI) source was used to acquire data in positive and negative ion modes. Furthermore, a rat model of diabetes mellitus was established by feeding with a high-sugar high-fat diet, and injection with streptozocin at a dose of 35 mg·kg~(-1), and the modeled rats were then administrated with Dihuang Baoyuan Granules. The fasting blood glucose, hemoglobin A1c, and other relevant indicators were measured, and the substances present in the plasma, liver, and kidney were identified. By reference to quasi-molecular ions, MS/MS fragment ions, MS spectra of reference substances, and compound information in available reports, 191 components were identified in Dihuang Baoyuan Granules, including 29 alkaloids, 24 flavonoids, 22 organic acids, 16 amino acids, 12 terpenes, 11 steroid saponins, 9 sugars, 8 phenylethanoid glycosides, 8 nucleosides, 2 phenylpropanoids, and 49 others compounds. Eighty-three chemical components were identified in rat plasma, 109 in the liver, and 98 in the kidney. Component identification and characterization of Dihuang Baoyuan Granules in vitro and in vivo provide efficacy information and guidance for the basic research on the pharmacodynamic substances and further clinical application of this prescription.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Cromatografía Líquida de Alta Presión/métodos , Animales , Ratas , Masculino , Humanos , Hígado/efectos de los fármacos , Hígado/química , Hígado/metabolismo , Espectrometría de Masas/métodos , Riñón/efectos de los fármacos , Riñón/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus/tratamiento farmacológico
20.
Front Cell Infect Microbiol ; 14: 1359432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779567

RESUMEN

Diabetic nephropathy (DN) is one of the main complications of diabetes and a major cause of end-stage renal disease, which has a severe impact on the quality of life of patients. Strict control of blood sugar and blood pressure, including the use of renin-angiotensin-aldosterone system inhibitors, can delay the progression of diabetic nephropathy but cannot prevent it from eventually developing into end-stage renal disease. In recent years, many studies have shown a close relationship between gut microbiota imbalance and the occurrence and development of DN. This review discusses the latest research findings on the correlation between gut microbiota and microbial metabolites in DN, including the manifestations of the gut microbiota and microbial metabolites in DN patients, the application of the gut microbiota and microbial metabolites in the diagnosis of DN, their role in disease progression, and so on, to elucidate the role of the gut microbiota and microbial metabolites in the occurrence and prevention of DN and provide a theoretical basis and methods for clinical diagnosis and treatment.


Asunto(s)
Nefropatías Diabéticas , Microbioma Gastrointestinal , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/microbiología , Progresión de la Enfermedad , Disbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...