Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Immunol ; 51(9): 2281-2295, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33728652

RESUMEN

Cryptococcus gattii is a capsular pathogenic fungus causing life-threatening cryptococcosis. Although the capsular polysaccharides (CPs) of C. gattii are considered as virulence factors, the physiological significance of CP biosynthesis and of CPs themselves is not fully understood, with many conflicting data reported. First, we demonstrated that CAP gene deletant of C. gattii completely lacked capsule layer and its virulence, and that the strain was susceptible to host-related factors including oxidizing, hypoxic, and hypotrophic conditions in vitro. Extracellular CPs recovered from culture supernatant bound specifically to C. gattii acapsular strains, not to other fungi and immune cells, and rendered them the immune escape effects. In fact, dendritic cells (DCs) did not efficiently uptake the CP-treated acapsular strains, which possessed no visible capsule layer, and a decreased amount of phosphorylated proteins and cytokine levels after the stimulation. DCs recognized C. gattii acapuslar cells via an immune receptor CD11b- and Syk-related pathway; however, CD11b did not bind to CP-treated acapsular cells. These results suggested that CPs support immune evasion by coating antigens on C. gattii and blocking the interaction between CD11b and C. gattii cells. Here, we describe the importance of CPs in pathogenicity and immune evasion mechanisms of C. gattii.


Asunto(s)
Antígeno CD11b/inmunología , Cryptococcus gattii/inmunología , Cápsulas Fúngicas/inmunología , Polisacáridos Fúngicos/inmunología , Evasión Inmune/inmunología , Quinasa Syk/metabolismo , Animales , Criptococosis/inmunología , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidad , Citocinas/biosíntesis , Células Dendríticas/inmunología , Femenino , Cápsulas Fúngicas/genética , Polisacáridos Fúngicos/genética , Eliminación de Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Polisacáridos/genética , Polisacáridos/inmunología , Factores de Virulencia/inmunología
2.
Biol Pharm Bull ; 43(2): 230-239, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32009111

RESUMEN

Cryptococcosis is a potentially lethal disease caused by fungal pathogens including Cryptococcus neoformans and Cryptococcus gattii species complex. These fungal pathogens live in the environment and are associated with certain tree species and bird droppings. This infectious disease is not contagious, and healthy individuals may contract cryptococcal infections by inhaling the airborne pathogens from the environment. Although cleaning a contaminated environment is a feasible approach to control environmental fungal pathogens, prophylactic immunization is also considered a promising method to regulate cryptococcal infections. We review the history of the development of cryptococcal vaccines, vaccine components, and the various forms of immune memory induced by cryptococcal vaccines.


Asunto(s)
Criptococosis/terapia , Vacunas/uso terapéutico , Animales , Cryptococcus neoformans/inmunología , Modelos Animales de Enfermedad , Factores Inmunológicos , Memoria Inmunológica , Vacunación
3.
PLoS One ; 14(8): e0220989, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31398236

RESUMEN

Cryptococcus gattii is a capsular fungal pathogen, which causes life-threatening cryptococcosis in immunocompetent individuals. This emerging pathogen is less likely to be recognized by innate immunity compared to traditional Cryptococcus neoformans strains. Previous studies indicate that C-type lectin receptors (CLRs), including dectin-1 and dectin-2, play a role in recognizing cryptococcal cells; however, it remains to be elucidated whether the receptors physically associate with C. gattii yeast cell surfaces. Based on the previous findings, we hypothesized that culture conditions influence the expression or exposure of CLR ligands on C. gattii. Therefore, in the present study, we first investigated the culture conditions that induce exposure of CLR ligands on C. gattii yeast cells via the binding assay using recombinant fusion proteins of mouse CLR and IgG Fc, Fc dectin-1 and Fc dectin-2. Common fungal culture media, such as yeast extract-peptone-dextrose (YPD) broth, Sabouraud broth, and potato dextrose agar, did not induce the exposure of dectin-1 ligands, including ß-1,3-glucan, on both capsular and acapsular C. gattii strains, in contrast to Fc dectin-1 and Fc dectin-2 bound to C. gattii cells growing in the conventional synthetic dextrose (SD) medium [may also be referred to as a yeast nitrogen base with glucose medium]. The medium also induced the exposure of dectin-1 ligands on C. neoformans, whereas all tested media induced dectin-1 and dectin-2 ligands in a control fungus Candida albicans. Notably, C. gattii did not expose dectin-1 ligands in SD medium supplemented with yeast extract or neutral buffer. In addition, compared to YPD medium-induced C. gattii, SD medium-induced C. gattii more efficiently induced the phosphorylation of Syk, Akt, and Erk1/2 in murine dendritic cells (DCs). Afterwards, the cells were considerably engulfed by DCs and remarkably induced DCs to secrete the inflammatory cytokines. Overall, the findings suggest that C. gattii alters its immunostimulatory potential in response to the environment.


Asunto(s)
Cryptococcus gattii/inmunología , Ambiente , Inmunomodulación , Animales , Células de la Médula Ósea/metabolismo , Membrana Celular/metabolismo , Cryptococcus gattii/crecimiento & desarrollo , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Ligandos , Ratones Endogámicos C57BL , Unión Proteica , Solubilidad
4.
Med Mycol ; 57(8): 1046-1054, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668754

RESUMEN

Vaccine-induced immune responses, including neutrophil, macrophage, and T-cell responses, ameliorate cryptococcosis caused by Cryptococcus gattii. However, whether neutrophils can exert fungicidal activity against C. gattii remains to be elucidated. Therefore, in this study, we investigated the neutrophil-mediated fungicidal effect against C. gattii R265 in vitro and compared it to the related fungal pathogen, Cryptococcus neoformans standard strain H99. We found that neutrophils recognized, phagocytosed, and killed C. gattii R265 in the presence of fresh mouse serum. This antifungal effect required phagocytosis and serine protease activity but not nicotinamide adenine dinucleotide phosphate oxidase activity. We also demonstrated that C. gattii R265 was more resistant to oxidative and nitrosative stress than C. neoformans H99. Together, these findings indicate that neutrophils can exert fungicidal activity against highly virulent C. gattii, at least under in vitro conditions.


Asunto(s)
Cryptococcus gattii/inmunología , Inmunidad Celular , Neutrófilos/inmunología , Animales , Cryptococcus neoformans/inmunología , Ratones Endogámicos C57BL , Viabilidad Microbiana , Estrés Nitrosativo , Estrés Oxidativo , Fagocitosis
5.
Mucosal Immunol ; 12(1): 265-276, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30279512

RESUMEN

Tissue-resident memory T cells (TRMs) are a novel nonvascular memory T cell subset. Although CD8+ TRMs are well-characterized, CD4+ TRMs-especially lung-resident memory Th17 cells-are still being defined. In this study, we characterized lung-resident memory Th17 cells (lung TRM17) and their role in protection against the highly virulent fungus Cryptococcus gattii. We found that intravenously transferred DCs preferentially migrated to lungs and attracted recipient DCs and led to the induction of long-lived Th17 cells expressing characteristic markers. This population could be clearly discriminated from circulating T cells by intravascular staining and was not depleted by the immunosuppressive agent FTY720. The C. gattii antigen re-stimulation assay revealed that vaccine-induced lung Th17 cells produced IL-17A but not IFNγ. The DC vaccine significantly increased IL-17A production and suppressed fungal burden in the lungs and improved the survival of mice infected with C. gattii. This protective effect was significantly reduced in the IL-17A knockout (KO) mice, but not in the FTY720-treated mice. The protective effect also coincided with the activation of neutrophils and multinucleated giant cells, and these inflammatory responses were suppressed in the vaccinated IL-17A KO mice. Overall, these data demonstrated that the systemic DC vaccine induced lung TRM17, which played a substantial role in anti-fungal immunity.


Asunto(s)
Criptococosis/inmunología , Cryptococcus gattii/inmunología , Células Dendríticas/inmunología , Vacunas Fúngicas/inmunología , Inmunoterapia Adoptiva/métodos , Pulmón/inmunología , Células Th17/inmunología , Animales , Células Cultivadas , Criptococosis/terapia , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Memoria Inmunológica , Interleucina-17/genética , Pulmón/microbiología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Sci Rep ; 8(1): 17406, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479367

RESUMEN

Leukocyte mono-immunoglobulin-like receptor (LMIR)/CD300 proteins comprise a family of immunoglobulin-like receptors that are widely expressed on the immune cell surface in humans and mice. In general, LMIR3/CD300f suppresses the inflammatory response, but it can occasionally promote it. However, the precise roles of LMIR3 in the function of neutrophils remain to be elucidated. In the present study, we investigated LMIR3 expression in mature and immature neutrophils, and evaluated the effects of LMIR3 deficiency in mouse neutrophils. Our results indicated that bone marrow (BM) neutrophils expressed LMIR3 on their cell surface during cell maturation and that surface LMIR3 expression increased in response to Pseudomonas aeruginosa infection in a TLR4/MyD88-dependent manner. LMIR3-knockout (KO) neutrophils displayed significantly increased hypochlorous acid production, and elastase release, as well as significantly augmented cytotoxic activity against P. aeruginosa and Candida albicans; meanwhile, inhibitors of elastase and myeloperoxidase offset this enhanced antimicrobial activity. Furthermore, LMIR3-KO mice were significantly more resistant to Pseudomonas peritonitis and systemic candidiasis, although this may not be entirely due to the enhanced activity of neutrophils. These results demonstrate that LMIR3/CD300f deficiency augments the antimicrobial activity of mouse neutrophils.


Asunto(s)
Candidiasis/inmunología , Neutrófilos/inmunología , Peritonitis/inmunología , Receptores Inmunológicos/genética , Animales , Candida albicans/patogenicidad , Candidiasis/genética , Candidiasis/microbiología , Línea Celular Tumoral , Células Cultivadas , Humanos , Ácido Hipocloroso/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Elastasa Pancreática/metabolismo , Peritonitis/genética , Peritonitis/microbiología , Pseudomonas aeruginosa/patogenicidad , Receptores Inmunológicos/metabolismo , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...