Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38825404

RESUMEN

BACKGROUND: Periodontal disease is the leading cause of tooth loss, and an association between periodontal disease and non-oral systemic diseases has been shown. Formation of biofilm by periodontal pathogens such as Fusobacterium nucleatum, Porphyromonas gingivalis, and Streptococcus mutans and their resistance to antimicrobial agents are at the root of persistent and chronic bacterial infections. METHODS: The bactericidal effect of far-ultraviolet (F-UV) light irradiation at 222 nm on periodontal bacteria was assessed qualitatively and quantitatively. The effect of biofilm disruption by F-UV light on periodontal bacteria was examined by crystal violet staining, and the morphologic changes of the biofilm after F-UV irradiation were explored by confocal laser microscopy and scanning electron microscopy. We developed a thin fiber-type 222 nm F-UV irradiator and studied its safety and effect of reducing bacteria in rodent models. RESULTS: F-UV light at 222 nm had a bactericidal effect on F. nucleatum, P. gingivalis, and S. mutans. Irradiation with F-UV light reduced the biofilm formed by the bacteria and sterilized them from within. Confocal laser microscopy showed a clear reduction in biofilm thickness, and scanning electron microscopy confirmed disintegration of the biofilm architecture. F-UV irradiation was less damaging to DNA and less cytotoxic than deep-ultraviolet light, and it reduced bacterial counts on the tooth surface. CONCLUSION: F-UV irradiation has the potential to destroy biofilm and act as a bactericide against pathogenic bacteria in the biofilm.

2.
Brain Sci ; 13(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36831801

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a determinant marker for the stigmoid body (STB), a neurocytoplasmic physiological inclusion. STB/HAP1 enriched areas in the brain/spinal cord are usually protected from neurodegenerative diseases, whereas the regions with tiny amounts or no STB/HAP1 are affected. In addition to the brain/spinal cord, HAP1 is highly expressed in the myenteric/submucosal plexuses of the enteric nervous system in the gastrointestinal tract. The tongue is attached to the pharynx by the hyoid bone as an extension of the gastrointestinal system. To date, the immunohistochemical distribution and neurochemical characterization of HAP1 have not been elucidated in the lingual ganglia. Using immunohistochemistry and light microscopy, our current study demonstrates the expression and immunohistochemical phenotype of HAP1 in the lingual ganglia of adult mice. We showed that HAP1 was profoundly distributed in the intralingual ganglion (ILG) and the ganglia near the root of the tongue (which we coined as "lingual root ganglion"; LRG). Neurons in ILG and LRG exhibited high coexpression of HAP1 with NOS or ChAT. Furthermore, most HAP1-immunoreactive neurons contained SP, CGRP, and VIP immunoreactivity in both ILG and LRG. The current results might serve as an essential base for future studies to elucidate the pathological/physiological functions of HAP1 in the lingual ganglia.

3.
Neurosci Res ; 191: 13-27, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36581175

RESUMEN

Huntingtin-associated protein 1(HAP1) is an immunohistochemical marker of the stigmoid body (STB). Brain and spinal cord regions with lack of STB/HAP1 immunoreactivity are always neurodegenerative targets, whereas STB/HAP1 abundant regions are usually spared from neurodegeneration. In addition to the brain and spinal cord, HAP1 is abundantly expressed in the excitatory and inhibitory motor neurons in myenteric plexuses of the enteric nervous system (ENS). However, the detailed expression of HAP1 and its neurochemical characterization in submucosal plexuses of ENS are still unknown. In this study, we aimed to clarify the expression and neurochemical characterization of HAP1 in the submucosal plexuses of the small intestine in adult mice and rats. HAP1 was highly expressed in the submucosal plexuses of both rodents. The percentage of HAP1-immunoreactive submucosal neurons was not significantly varied between the intestinal segments of these rodents. Double immunofluorescence results revealed that almost all the cholinergic secretomotor neurons containing ChAT/ CGRP/ somatostatin/ calretinin, non-cholinergic secretomotor neurons containing VIP/NOS/TH/calretinin, and vasodilator neurons containing VIP/calretinin expressed HAP1. Our current study is the first to clarify that STB/HAP1 is expressed in secretomotor and vasodilator neurons of submucosal plexuses, suggesting that STB/HAP1 might modulate or protect the secretomotor and vasodilator functions of submucosal neurons in ENS.


Asunto(s)
Roedores , Vasodilatadores , Ratas , Ratones , Animales , Calbindina 2/metabolismo , Vasodilatadores/metabolismo , Intestino Delgado , Plexo Mientérico/metabolismo , Neuronas Motoras , Fenotipo
4.
Neuroscience ; 499: 40-63, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870563

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a core component of stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for various neurodegenerative diseases. Brain regions rich in STB/HAP1 immunoreactivity are usually spared from cell death, whereas brain regions with negligible STB/HAP1 immunoreactivity are the major neurodegenerative targets. Recently, we have shown that STB/HAP1 is abundantly expressed in the spinal preganglionic sympathetic/parasympathetic neurons but absent in the motoneurons of spinal cord, indicating that spinal motoneurons are more vulnerable to neurodegenerative diseases. In light of STB/HAP1 neuroprotective effects, it is also essential to clarify the distribution of STB/HAP1 in another major neurodegenerative target, the brainstem. Here, we examined the expression and detailed immunohistochemical distribution of STB/HAP1 and its relationships with choline acetyltransferase (ChAT) in the midbrain, pons, and medulla oblongata of adult mice. Abundant STB/HAP1 immunoreactive neurons were disseminated in the periaqueductal gray, Edinger-Westphal nucleus, raphe nuclei, locus coeruleus, pedunculopontine tegmental nucleus, superior/inferior salivatory nucleus, and dorsal motor nucleus of vagus. Double-label immunohistochemistry of HAP1 with ChAT (or with urocortin-1 for Edinger-Westphal nucleus centrally projecting population) confirmed that STB/HAP1 was highly present in parasympathetic preganglionic neurons but utterly absent in cranial nerve motor nuclei throughout the brainstem. These results suggest that due to deficient putative STB/HAP1-protectivity, cranial nerve motor nuclei might be more vulnerable to certain neurodegenerative stresses than STB/HAP1-expressing brainstem nuclei, including preganglionic parasympathetic nuclei. Our current results also lay a basic foundation for future studies that seek to clarify the physiological/pathological roles of STB/HAP1 in the brainstem.


Asunto(s)
Tronco Encefálico , Colina O-Acetiltransferasa , Animales , Tronco Encefálico/metabolismo , Colina O-Acetiltransferasa/metabolismo , Nervios Craneales/metabolismo , Bulbo Raquídeo , Ratones , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo
5.
Cell Tissue Res ; 386(3): 533-558, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34665322

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor and being considered as a core molecule of stigmoid body (STB). Brain/spinal cord regions with abundant STB/HAP1 expression are usually spared from neurodegeneration in stress/disease conditions, whereas the regions with little STB/HAP1 expression are always neurodegenerative targets. The enteric nervous system (ENS) can act as a potential portal for pathogenesis of neurodegenerative disorders. However, ENS is also a neurodegenerative target in these disorders. To date, the expression of HAP1 and its neurochemical characterization have never been examined there. In the current study, we determined the expression of HAP1 in the ENS of adult mice and characterized the morphological relationships of HAP1-immunoreactive (ir) cells with the markers of motor neurons, sensory neurons, and interneurons in the myenteric plexus using Western blotting and light/fluorescence microscopy. HAP1-immunoreaction was present in both myenteric and submucosal plexuses of ENS. Most of the HAP1-ir neurons exhibited STB in their cytoplasm. In myenteric plexus, a large number of calretinin, calbindin, NOS, VIP, ChAT, SP, somatostatin, and TH-ir neurons showed HAP1-immunoreactivity. In contrast, most of the CGRP-ir neurons were devoid of HAP1-immunoreactivity. Our current study is the first to clarify that HAP1 is highly expressed in excitatory motor neurons, inhibitory motor neurons, and interneurons but almost absent in sensory neurons in myenteric plexus. These suggest that STB/HAP1-ir neurons are mostly Dogiel type I neurons. Due to lack of putative STB/HAP1 protectivity, the sensory neurons (Dogiel type II) might be more vulnerable to neurodegeneration than STB/HAP1-expressing motoneurons/interneurons (Dogiel type I) in myenteric plexus.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Tracto Gastrointestinal/fisiología , Inmunohistoquímica/métodos , Plexo Mientérico/metabolismo , Animales , Masculino , Ratones , Fenotipo
6.
Brain Sci ; 11(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672867

RESUMEN

Adolescence is the critical postnatal stage for the action of androgen in multiple brain regions. Androgens can regulate the learning/memory functions in the brain. It is known that the inhibitory avoidance test can evaluate emotional memory and is believed to be dependent largely on the amygdala and hippocampus. However, the effects of androgen on inhibitory avoidance memory have never been reported in adolescent male rats. In the present study, the effects of androgen on inhibitory avoidance memory and on androgen receptor (AR)-immunoreactivity in the amygdala and hippocampus were studied using behavioral analysis, Western blotting and immunohistochemistry in sham-operated, orchiectomized, orchiectomized + testosterone or orchiectomized + dihydrotestosterone-administered male adolescent rats. Orchiectomized rats showed significantly reduced time spent in the illuminated box after 30 min (test 1) or 24 h (test 2) of electrical foot-shock (training) and reduced AR-immunoreactivity in amygdala/hippocampal cornu Ammonis (CA1) in comparison to those in sham-operated rats. Treatment of orchiectomized rats with either non-aromatizable dihydrotestosterone or aromatizable testosterone were successfully reinstated these effects. Application of flutamide (AR-antagonist) in intact adolescent rats exhibited identical changes to those in orchiectomized rats. These suggest that androgens enhance the inhibitory avoidance memory plausibly by binding with AR in the amygdala and hippocampus.

7.
Biochem Biophys Res Commun ; 534: 415-421, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33256979

RESUMEN

The liver is the major organ maintaining metabolic homeostasis in animals during shifts between fed and fasted states. Circadian oscillations in peripheral tissues including the liver are connected with feeding-fasting cycles. We generated transgenic mice with hepatocyte specific E4BP4, D-box negative regulator, overexpression. Liver-specific E4BP4 overexpression was also achieved by adenoviral gene transfer. Interestingly, hepatic E4BP4 overexpression induced marked insulin resistance, that was rescued by DBP, a competing D-box positive regulator, overexpression. At basal conditions hepatocyte E4BP4 transgenic mice exhibited increased gluconeogenesis with reduced AKT phosphorylation in liver. In muscle, AKT phosphorylation was impaired after insulin stimulation. Such muscle insulin resistance was associated with elevated free fatty acid flux from the liver and reduced fatty acid utilization as an energy source during the inactive phase. E4BP4, one of the clock-controlled output genes, are key metabolic regulators in liver adjusting liver and muscle metabolism and insulin sensitivity in the feeding-fasting cycles. Its tuning is critical for preventing metabolic disorders.


Asunto(s)
Relojes Circadianos , Metabolismo Energético , Hígado/metabolismo , Músculo Esquelético/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Grasas/metabolismo , Gluconeogénesis , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Regulación hacia Arriba
8.
Acta Histochem ; 122(8): 151650, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33161374

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a neuronal cytoplasmic protein that is predominantly expressed in the brain and spinal cord. In addition to the central nervous system, HAP1 is also expressed in the peripheral organs including endocrine system. Different types of enteroendocrine cells (EEC) are present in the digestive organs. To date, the characterization of HAP1-immunoreactive (ir) cells remains unreported there. In the present study, the expression of HAP1 in pyloric stomach in adult male rats and its relationships with different chemical markers for EEC [gastrin, marker of gastrin (G) cells; somatostatin, marker of delta (D) cells; 5-HT, marker of enterochromaffin (EC) cells; histamine, marker of enterochromaffin-like (ECL) cells] were examined employing single- or double-labelled immunohistochemistry and with light-, fluorescence- or electron-microscopy. HAP1-ir cells were abundantly expressed in the glandular mucosa but were very few or none in the surface epithelium. Double-labelled immunofluorescence staining for HAP1 and markers for EECs showed that almost all the G-cells expressed HAP1. In contrast, HAP1 was completely lacking in D-cells, EC-cells or ECL-cells. Our current study is the first to clarify that HAP1 is selectively expressed in G-cells in rat pyloric stomach, which probably reflects HAP1's involvement in regulation of the secretion of gastrin.


Asunto(s)
Células Enterocromafines/metabolismo , Células Similares a las Enterocromafines/metabolismo , Mucosa Gástrica/metabolismo , Proteínas del Tejido Nervioso/genética , Píloro/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animales , Biomarcadores/metabolismo , Células Enterocromafines/citología , Células Similares a las Enterocromafines/citología , Mucosa Gástrica/citología , Gastrinas/biosíntesis , Expresión Génica , Histamina/biosíntesis , Inmunohistoquímica , Masculino , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Píloro/citología , Ratas , Ratas Wistar , Somatostatina/biosíntesis , Células Secretoras de Somatostatina/citología
9.
IBRO Rep ; 9: 258-269, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33089002

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a polyglutamine (polyQ) length-dependent interactor with causal agents in several neurodegenerative diseases and has been regarded as a protective factor against neurodegeneration. In normal rodent brain and spinal cord, HAP1 is abundantly expressed in the areas that are spared from neurodegeneration while those areas with little HAP1 are frequent targets of neurodegeneration. We have recently showed that HAP1 is highly expressed in the spinal dorsal horn and may participate in modification/protection of certain sensory functions. Neurons in the dorsal root ganglia (DRG) transmits sensory stimuli from periphery to spinal cord/brain stem. Nevertheless, to date HAP1 expression in DRG remains unreported. In this study, the expression of HAP1 in cervical, thoracic, lumbar and sacral DRG in adult male mice and its relationships with different chemical markers for sensory neurons were examined using Western blot and immunohistochemistry. HAP1-immunoreactivity was detected in the cytoplasm of DRG neurons, and the percentage of HAP1-immunoreactive (ir) DRG neurons was ranged between 28-31 %. HAP1-immunoreactivity was comparatively more in the small cells (47-58 %) and medium cells (40-44 %) than that in the large cells (9-11 %). Double-immunostaining for HAP1 and markers for nociceptive or mechanoreceptive neurons showed that about 70-80 % of CGRP-, SP-, CB-, NOS-, TRPV1-, CR- and PV-ir neurons expressed HAP1. In contrast, HAP1 was completely lacking in TH-ir neurons. Our current study is the first to clarify that HAP1 is highly expressed in nociceptive/proprioceptive neurons but absent in light-touch-sensitive TH neurons, suggesting the potential importance of HAP1 in pain transduction and proprioception.

10.
Neuroscience ; 440: 15-29, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32450298

RESUMEN

Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. However, to date, the effects of androgen on the intrinsic plasticity of hippocampal neurons have not been clearly elucidated. In this study, the effects of androgen on the expression of AR in the hippocampus and on the dynamics of intrinsic plasticity of CA1 pyramidal neurons were examined using immunohistochemistry, Western blotting and whole-cell current-clamp recording in unoperated, sham-operated, orchiectomized (OCX), OCX + testosterone (T) or OCX + dihydrotestosterone (DHT)-primed adolescent male rats. Orchiectomy significantly decreased AR-immunoreactivity, resting membrane potential, action potential numbers, afterhyperpolarization amplitude and membrane resistance, whereas it significantly increased action potential threshold and membrane capacitance. These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.


Asunto(s)
Andrógenos , Hipocampo , Andrógenos/farmacología , Animales , Dihidrotestosterona/farmacología , Flutamida/farmacología , Hipocampo/metabolismo , Masculino , Células Piramidales/metabolismo , Ratas , Receptores Androgénicos/metabolismo
11.
Neuroscience ; 394: 109-126, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367943

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a neural interactor of huntingtin in Huntington's disease and interacts with gene products in a number of other neurodegenerative diseases. In normal brains, HAP1 is expressed abundantly in the hypothalamus and limbic-associated regions. These areas tend to be spared from neurodegeneration while those with little HAP1 are frequently neurodegenerative targets, suggesting its role as a protective factor against apoptosis. In light of the relationship between neurodegenerative diseases and deterioration of higher nervous activity, it is important to definitively clarify HAP1 expression in a cognitively important brain region, the retrosplenial-retrohippocampal area. Here, HAP1 expression was evaluated immunohistochemically over the retrosplenial cortex, the subicular complex, and the entorhinal and perirhinal cortices. HAP1-immunoreactive (ir) cells were classified into five discrete groups: (1) a distinct retrosplenial cell cluster exclusive to the superficial layers of the granular cortex, (2) a conspicuous, thin line of cells in layers IV/V of the "subiculum-backing cortex," (3) a group of highly immunoreactive cells associated with the medial entorhinal-subicular corner, (4) pericallosal cells just below layer VI and adjacent to the white matter, and (5) other sporadic, widely-disseminated HAP1-immunoreactive cells. HAP1 was found to be the first marker for the complex subiculum-backing cortex and a precise marker for several subfields in the retrosplenial-retrohippocampal area, verified through comparative staining with other neurochemicals. HAP1 may play an important role in protecting these cortical structures and functions for higher nervous activity by increasing the threshold to neurodegeneration and decreasing vulnerability to stress or aging.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/análisis , Animales , Cuerpo Calloso/citología , Cuerpo Calloso/metabolismo , Inmunohistoquímica , Masculino , Neuronas/citología , Neuronas/metabolismo , Ratas Wistar
12.
EBioMedicine ; 18: 146-156, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28389215

RESUMEN

In Wfs1-/-Ay/a islets, in association with endoplasmic reticulum (ER) stress, D-site-binding protein (Dbp) expression decreased and Nuclear Factor IL-3 (Nfil3)/E4 Promoter-binding protein 4 (E4bp4) expression increased, leading to reduced DBP transcriptional activity. Similar alterations were observed with chemically-induced ER stress. Transgenic mice expressing E4BP4 under the control of the mouse insulin I gene promoter (MIP), in which E4BP4 in ß-cells is expected to compete with DBP for D-box, displayed remarkable glucose intolerance with severely impaired insulin secretion. Basal ATP/ADP ratios in MIP-E4BP4 islets were elevated without the circadian oscillations observed in wild-type islets. Neither elevation of the ATP/ADP ratio nor an intracellular Ca2+ response was observed after glucose stimulation. RNA expressions of genes involved in insulin secretion gradually increase in wild-type islets early in the feeding period. In MIP-E4BP4 islets, however, these increases were not observed. Thus, molecular clock output DBP transcriptional activity, susceptible to ER stress, plays pivotal roles in ß-cell priming for insulin release by regulating ß-cell metabolism and gene expressions. Because ER stress is also involved in the ß-cell failure in more common Type-2 diabetes, understanding the currently identified ER stress-associated mechanisms warrants novel therapeutic and preventive strategies for both rare form and common diabetes.


Asunto(s)
Proteínas CLOCK/genética , Estrés del Retículo Endoplásmico , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas CLOCK/metabolismo , Calcio/análisis , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Neuroscience ; 340: 201-217, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27984179

RESUMEN

Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive (ir) structures have yet to be determined there. In the current study, HAP1 expression was immunohistochemically evaluated in light and electron microscopy through the cervical, thoracic, lumbar, and sacral spinal cords of the adult male rat. Our results showed that HAP1 is specifically expressed in neurons through the spinal segments and that more than 90% of neurons expressed HAP1 in lamina I-II, lamina X, and autonomic preganglionic regions. Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in laminae I-II and X. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores Androgénicos/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Animales , Western Blotting , Recuento de Células , Inmunohistoquímica , Masculino , Microscopía Electrónica , Fotomicrografía , Ratas Wistar
14.
Exp Cell Res ; 317(12): 1689-700, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21609716

RESUMEN

The stigmoid body (STB) is a cytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), and HAP1/STB formation is induced by transfection of the HAP1 gene into cultured cells. In the present study, we examined the intracellular colocalization of HAP1/STBs with steroid hormone receptors (SHRs), including the androgen receptor (AR), estrogen receptor, glucocorticoid receptor (GR), and mineralocorticoid receptor, in COS-7 cells cotransfected with HAP1 and each receptor. We found that C-terminal ligand-binding domains of all SHRs had potential for colocalization with HAP1/STBs, whereas only AR and GR were clearly colocalized with HAP1/STBs when each full-length SHR was coexpressed with HAP1. In addition, it appeared that HAP1/STBs did not disrupt GR and AR functions because the receptors on HAP1/STBs maintained nuclear translocation activity in response to their specific ligands. When the cells were treated with a proteasome inhibitor, GR and AR localized outside HAP1/STBs translocated into the nucleus, whereas the receptors colocalized with HAP1/STBs persisted in their colocalization even after treatment with their ligands. Therefore, HAP1/STBs may be involved in cytoplasmic modifications of the nuclear translocation of GR and AR in a ubiquitin-proteasome system.


Asunto(s)
Cuerpos de Inclusión/efectos de los fármacos , Leupeptinas/farmacología , Proteínas del Tejido Nervioso/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animales , Western Blotting , Células COS , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Chlorocebus aethiops , Inhibidores de Cisteína Proteinasa/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Cuerpos de Inclusión/metabolismo , Proteínas del Tejido Nervioso/genética , Receptores Androgénicos/genética , Receptores de Estrógenos/genética , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Fracciones Subcelulares , Activación Transcripcional
15.
Neuroreport ; 22(5): 232-8, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21386698

RESUMEN

Huntingtin-associated protein 1 (HAP1) is an essential component of the stigmoid body (STB) and known as a possible neuroprotective interactor with causative proteins for Huntington's disease, spinal and bulbar muscular atrophy, spinocerebellar ataxia type 17 (SCA17), and Joubert syndrome. To clarify what other causative molecules HAP1/STB could interact with, we cloned normal causative genes for several neural disorders from human brain RNA library and evaluated their subcellular interaction with HAP1/STB by immunocytochemistry and immunoprecipitation after cotransfection into Neuro2a cells. The results clearly showed that HAP1/STB interacts with the normal ataxin-3 through Josephin domain and polyglutamine-expanded mutants derived from SCA3 as well. The findings suggest that HAP1/STB could modify the physiological function of normal ataxin-3 and pathogenesis of SCA3 attributable to the mutant ataxin-3.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Ataxina-3 , Western Blotting , Humanos , Inmunoprecipitación , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ataxias Espinocerebelosas/metabolismo , Transfección
16.
Hum Mol Genet ; 20(7): 1274-84, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21199859

RESUMEN

Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic ß-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic ß-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type ß-cells, there was a 32% reduction in the intensity in WFS1-deficient ß-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null ß-cells relative to that in wild-type ß-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of ß-cell dysfunction in patients with Wolfram syndrome.


Asunto(s)
Retículo Endoplásmico/metabolismo , Exocitosis/fisiología , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/inmunología , Proinsulina/metabolismo , Vesículas Secretoras/metabolismo , Animales , Calcio/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Exocitosis/efectos de los fármacos , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Células Secretoras de Insulina/ultraestructura , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proinsulina/genética , Vesículas Secretoras/genética , Vesículas Secretoras/ultraestructura , Edulcorantes/farmacología , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Síndrome de Wolfram/patología
17.
Histochem Cell Biol ; 132(3): 305-18, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19578869

RESUMEN

The stigmoid body (STB) is a neurocytoplasmic inclusion containing huntingtin-associated protein 1 (HAP1), an interactor of huntingtin, and its formation is induced by transfection of HAP1-cDNA into cultured cells. Although STB is believed to play a protective role in polyglutamine diseases, including Huntington's disease and spinal and bulbar muscular atrophy, by sequestering the causative proteins, huntingtin and androgen receptor, respectively, its physiological function and formation remain poorly understood. Therefore, STB is occasionally confused with another cytoplasmic inclusion observed in polyglutamine diseases, the aggresome. Here we examined the subcellular dynamics of STB and compared it immunohistochemically and cytochemically with the aggresome in the rat brain and COS-7 or HeLa cells transfected with HAP1 and/or polyglutamine disease-associated genes. In time-lapse image analysis of HAP1-transfected cells, the HAP1-induced STB is formed from multiple fusions of small HAP1 inclusions characterized by vigorous cytoplasmic movement. In HAP1-transfected cells treated with a microtubule-depolymerizing drug, although the formation of small HAP1 inclusions was not affected, their fusion was critically inhibited. Immunohistochemistry and cytochemistry revealed the absence of association between STB and aggresomal markers, such as ubiquitin/proteasome, intermediate filaments, and the centrosome. Taken together, we concluded that STB is formed by a two-step process comprising microtubule-independent formation of small HAP1 inclusions and microtubule-dependent fusion of these inclusions, and that STB is distinct from pathological aggresomes.


Asunto(s)
Cuerpos de Inclusión/fisiología , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Línea Celular , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Cuerpos de Inclusión/patología , Microtúbulos/ultraestructura , Ratas
18.
Cell Tissue Res ; 332(3): 381-91, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18401595

RESUMEN

Neuronal aromatase, the enzyme that catalyzes the conversion of androgens to estrogens, is involved in brain sexual differentiation, the regulation of reproductive behavior, and gonadotropin secretion. We have previously reported that aromatase P450 (AromP450) protein expression is enhanced by both androgens and estrogens in the principal nucleus of the bed nucleus of the stria terminalis (prBST) and posterodorsal part of the medial amygdaloid nucleus (pdMAm) of the adult rat but is not altered in the central amygdaloid nucleus (CeAm) even after sex-steroid withdrawal or supplementation. Here, we have evaluated, via in situ hybridization with digoxigenin-labeled cRNA probes, the sex-steroidal regulation of brain AromP450 mRNA in the prBST, pdMAm, and CeAm of orchidectomized and adrenalectomized adult male rats treated with sesame oil, testosterone (1 mg/rat/day), dihydrotestosterone (1 mg/rat/day), or 17beta-estradiol (2 microg/rat/day) for 6 days. AromP450-mRNA expression in the prBST and pdMAm was markedly reduced in orchidectomized/adrenalectomized rats treated with sesame oil but strongly enhanced by testosterone or dihydrotestosterone and significantly reinstated by 17beta-estradiol. These results are essentially consistent with those of AromP450 protein expression and thus indicate that enhanced AromP450-protein expression in the prBST and pdMAm reflects transcriptional upregulation and/or post-transcriptional stabilization of its mRNA by sex steroids. In the CeAm, despite moderate AromP450-protein expression, the mRNA has never been detected with or without sex-steroidal manipulations, indicating that the putative sex-steroid-insensitive AromP450 mRNA in the CeAm may be distinct from that in the prBST and pdMAm or, if it occurs at all, expressed at much lower levels.


Asunto(s)
Aromatasa/genética , Encéfalo/metabolismo , Regulación Enzimológica de la Expresión Génica , Hormonas Esteroides Gonadales/farmacología , Animales , Aromatasa/biosíntesis , Química Encefálica , Dihidrotestosterona/farmacología , Estradiol/farmacología , Expresión Génica , Hormonas/sangre , Hibridación in Situ/métodos , Masculino , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Esteroides/sangre , Testosterona/farmacología
19.
Histochem Cell Biol ; 128(4): 335-48, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17687563

RESUMEN

The anti-serum against an unknown human placental antigen complex X-P2 (hPAX-P2) immunohistochemically recognizes three putative molecules (hPAX-P2S, hPAX-P2N, and hPAX-P2R), each of which is associated with the stigmoid bodies (STBs), necklace olfactory glomeruli (NOGs), or reticulo-filamentous structures (RFs) in the rat brain. The STBs also contain huntingtin-associated protein 1 (HAP1), and the HAP1-cDNA transfection induces STB-like inclusions in cultured cells. In order to clarify the relationship between hPAX-P2S and HAP1 isoforms (A/B), we performed Western blotting, immuno-histo/cytochemistry for light- and electron-microscopy and pre-adsorption tests with HAP1 deletion fragments. The results showed that the anti-hPAX-P2 anti-serum recognizes HAP1(474-577) of HAP1A/B in Western blotting and strongly immunostains HAP1A-induced STB-like inclusions but far weakly detects HAP1B-induced diffuse structures in HAP1-transfected HEK 293 cells. In the rat brain, immunoreactivity of the anti-hPAX-P2 anti-serum for the STBs was eliminated by pre-adsorption with HAP1(474-577), whereas no pre-adsorption with any different HAP1 fragments can suppress immunoreactivity for the NOGs and RFs, which were not immunoreactive to anti-HAP1 anti-serum. These findings indicate that hPAX-P2S, which is distinct from hPAX-P2N and hPAX-P2R, is identical with STB-constituted HAP1 and that the HAP1-induced/immunoreactive inclusions correspond to the hPAX-P2-immunoreactive STBs previously identified in the brain.


Asunto(s)
Autoantígenos/inmunología , Sueros Inmunes/inmunología , Cuerpos de Inclusión/metabolismo , Proteínas del Tejido Nervioso/inmunología , Hormonas Placentarias/inmunología , Animales , Autoantígenos/sangre , Biomarcadores/análisis , Biomarcadores/sangre , Línea Celular , Eliminación de Gen , Genes Reporteros/genética , Humanos , Inmunohistoquímica , Cuerpos de Inclusión/ultraestructura , Masculino , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Proteínas del Tejido Nervioso/sangre , Proteínas del Tejido Nervioso/genética , Bulbo Olfatorio/metabolismo , Hormonas Placentarias/sangre , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar
20.
J Comp Neurol ; 500(3): 557-73, 2007 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-17120292

RESUMEN

The brain has an estrogen-biosynthetic potential resulting from the presence of neuronal aromatase, which controls the intraneural sex-steroidal milieu and is involved in brain sexual differentiation, psychobehavioral regulation, and neuroprotection. In the rat brain, three distinct aromatase-P450-immunoreactive (AromP450-I) neural groups have been categorized in terms of their peak expression time (fetal, fetoneonatal, and young-to-adult groups), suggesting the presence of region-specific regulation on brain AromP450. In the present study, we compared the expressions between AromP450 protein and mRNA by using immunohistochemistry and in situ hybridization with an ovary-derived cRNA probe in serial sections of fetal, fetoneonatal, and adult male rat brains and then performed steroidal manipulations to evaluate the sex-steroidal effects on AromP450 in adult orchiectomized and adrenalectomized (OCX + ADX) male rats. As a result, prominent mRNA signals were detected in the fetal (i.e., the anterior medial preoptic nucleus) and fetoneonatal (i.e., the medial preopticoamygdaloid neuronal arc) groups, although no detectable signal was found in the "young-to-adult" group (i.e., the central amygdaloid nucleus). In addition, the "fetoneonatal" AromP450-I neurons were prominently reduced in number and intensity after OCX + ADX and then were reinstated by the administration of dihydrotestosterone, testosterone, or 17beta-estradiol. In contrast, none of the sex steroids had any significant effects on the young-to-adult group. Several possible explanations were explored for why the young-to-adult group may differ in aromatase expression and regulation, including the possibility that distinct splicing variants or isozymes for aromatase exist in the rat brain.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Hormonas Esteroides Gonadales/metabolismo , ARN Mensajero/metabolismo , Diferenciación Sexual/fisiología , Adrenalectomía , Animales , Aromatasa/genética , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Estradiol/metabolismo , Estradiol/farmacología , Femenino , Hormonas Esteroides Gonadales/farmacología , Inmunohistoquímica , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Orquiectomía , Ratas , Ratas Wistar , Caracteres Sexuales , Testosterona/metabolismo , Testosterona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...