Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 9(12)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276442

RESUMEN

Myxozoans are a diverse group of cnidarian parasites, including important pathogens in different aquaculture species, without effective legalized treatments for fish destined for human consumption. We tested the effect of natural feed additives on immune parameters of common carp and in the course of a controlled laboratory infection with the myxozoan Sphaerospora molnari. Carp were fed a base diet enriched with 0.5% curcumin or 0.12% of a multi-strain yeast fraction, before intraperitoneal injection with blood stages of S. molnari. We demonstrate the impact of these treatments on respiratory burst, phagocytosis, nitric oxide production, adaptive IgM+ B cell responses, S. molnari-specific antibody titers, and on parasite numbers. Both experimental diets enriched B cell populations prior to infection and postponed initial parasite proliferation in the blood. Curcumin-fed fish showed a decrease in reactive oxygen species, nitric oxide production and B cell density at late-stage infection, likely due to its anti-inflammatory properties, favoring parasite propagation. In contrast, multi-strain yeast fraction (MsYF)-fed fish harbored the highest S. molnari-specific antibody titer, in combination with the overall lowest parasite numbers. The results demonstrate that yeast products can be highly beneficial for the outcome of myxozoan infections and could be used as effective feed additives in aquaculture.

2.
Animals (Basel) ; 10(3)2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32121317

RESUMEN

This study focused on supplementing pikeperch (Sander lucioperca) larvae with rotifers fed with Chlorella vulgaris during the first 15 days post hatching (dph). Larvae were fed a combination of rotifers and artemia under three different enrichments: A) Nannochloropsis occulata, B) Chlorella vulgaris, and C) a commercial enrichment-Selco, Spresso from INVE. After 17 days from the trial initiation differences were found between treatments on survival rate, myomere height (MH), fatty acid composition, and stress tolerance. In terms of survival, larvae from treatment b (74.5%) and c (66%) excelled over the control (a) treatment (59%). Furthermore, larvae from both the Chlorella (b) and the Selco (c) treatments showed more resilience to stress conditions (10% and 37% reduction in mortality) when exposed to high salinity conditions (18ppt) for 3 h (stress response). Overall, larvae from treatments b and c performed better than those receiving a non-enriched diet (a), likely due to the higher levels of Essential Fatty Acids (EFA) and the ability of pikeperch to desaturate and elongate fatty acids (FA) with 18 carbons to LC PUFAs (Polyunsaturated Fatty Acids). The present study provides valuable input for designing improved feeding protocols, which will increase the efficiency of pikeperch larval culture.

3.
Microorganisms ; 8(2)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053918

RESUMEN

This trial tested the use of lactic acid bacteria (LAB) on pikeperch (Sander lucioperca) larvae during their first feeding. The trial included the use of two probiotic treatments and one control (no probiotics). Pikeperch larvae were exposed to LAB as follows: (1) the live feed (Treatment 1, live feed) or (2) via the live feed and the larval rearing water (Treatment 2, probiotic). Significant differences were found between the treatments in terms of total length (TL), myomere height (MH), overall survival, and the tolerance to a high salinity challenge. Larvae exposed to LAB via both the live feed and the rearing water had a significantly higher overall survival rate (85%) than the other two treatments at 21 dph. When both treatments were subjected to high salinity rates (18 parts per thousand (ppt)), both treatments exposed to LAB demonstrated higher survival rates than the control treatment (28% and 40% survival rate at 180 min for the live feed and probiotic treatments, respectively, as compared with a 100% mortality rate at 150 min for the control). At the same time, larvae exposed to the probiotic treatment had a significantly higher TL as compared to the control after 12 and 21 days post hatch (dph) (probiotic 7.13 ± 0.21 and 11.71 ± 1.1 mm, control 5.86 and 10.79 mm at 12 and 21 dph, respectively). The results suggest that the use of LAB in both the live feed and the rearing water has a positive effect on pikeperch larval quality by strengthening their resilience to stress conditions, as well as improving the growth and survival rates.

4.
Parasit Vectors ; 12(1): 208, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060624

RESUMEN

BACKGROUND: Sphaerospora molnari is a myxozoan parasite causing skin and gill sphaerosporosis in common carp (Cyprinus carpio) in central Europe. For most myxozoans, little is known about the early development and the expansion of the infection in the fish host, prior to spore formation. A major reason for this lack of information is the absence of laboratory model organisms, whose life-cycle stages are available throughout the year. RESULTS: We have established a laboratory infection model for early proliferative stages of myxozoans, based on separation and intraperitoneal injection of motile and dividing S. molnari stages isolated from the blood of carp. In the present study we characterize the kinetics of the presporogonic development of S. molnari, while analyzing cellular host responses, cytokine and systemic immunoglobulin expression, over a 63-day period. Our study shows activation of innate immune responses followed by B cell-mediated immune responses. We observed rapid parasite efflux from the peritoneal cavity (< 40 hours), an initial covert infection period with a moderate proinflammatory response for about 1-2 weeks, followed by a period of parasite multiplication in the blood which peaked at 28 days post-infection (dpi) and was associated with a massive lymphocyte response. Our data further revealed a switch to a massive anti-inflammatory response (up to 1456-fold expression of il-10), a strong increase in the expression of IgM transcripts and increased number of IgM+ B lymphocytes, which produce specific antibodies for the elimination of most of the parasites from the fish at 35 dpi. However, despite the presence of these antibodies, S. molnari invades the liver 42 dpi, where an increase in parasite cell number and indistinguishable outer cell membranes are indicative of effective exploitation and disguise mechanisms. From 49 dpi onwards, the acute infection changes to a chronic one, with low parasite numbers remaining in the fish. CONCLUSIONS: To our knowledge, this is the first time myxozoan early development and immune modulation mechanisms have been analyzed along with innate and adaptive immune responses of its fish host, in a controlled laboratory system. Our study adds important information on host-parasite interaction and co-evolutionary adaptation of early metazoans (Cnidaria) with basic vertebrate (fish) immune systems and the evolution of host adaptation and parasite immune evasion strategies.


Asunto(s)
Carpas/inmunología , Carpas/parasitología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Myxozoa/inmunología , Enfermedades Parasitarias en Animales/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Riñón Cefálico/metabolismo , Interacciones Huésped-Parásitos , Inmunidad Celular , Inmunidad Humoral , Myxozoa/crecimiento & desarrollo , Enfermedades Parasitarias en Animales/parasitología , Esporas
5.
Int J Parasitol Parasites Wildl ; 2: 124-30, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24533325

RESUMEN

In the eastern Gulf of Mexico, off the coast of Florida, grey snapper, Lutjanus griseus was found to be infected with the myxozoan parasite Sphaerospora motemarini n. sp., with high prevalence (83%) and intensity of infection occuring in age-0 fish, and with parasite levels decreasing with age (age-1 snapper 40%; age-2 snapper 0%). The morphological, molecular and phylogenetic characterisation of the myxozoan showed that it is a member of the typically marine, polysporoplasmid Sphaerospora spp. which form a subclade within the Sphaerospora sensu stricto clade of myxozoans, which is characterised by large expansion segments in their SSU rDNA sequences. Presporogonic stages of S. motemarini n. sp. were detected in the blood, using PCR. Pseudoplasmodia and spores were found to develop in the renal corpuscles of the host, causing their massive expansion. Macroscopic and histopathological changes were observed in age-0 fish and show that S. motemarini n. sp. causes severe glomerulonephritis in L. griseus leading to a compromised host condition, which makes it more susceptible to stress (catch-and-release, predators, water quality) and can result in mortalities. These results are discussed in relation to the exploitation of grey snapper populations by commercial and recreational fisheries and with the observed increased mortalities with temperature along the coast of Florida. In the future, we would like to determine prevalence and intensity of infection with S. motemarini n. sp. in juvenile L. griseus in different areas of the Gulf of Mexico in order to be able to estimate the temperature dependence of S. motemarini n. sp. proliferation and to be able to predict its distribution and severity during climatic changes in the Gulf.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...