Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474916

RESUMEN

Ferromagnetic debris in lubricating oil, serving as an important communication carrier, can effectively reflect the wear condition of mechanical equipment and predict the remaining useful life. In practice application, the detection signals collected by using inductive sensors contain not only debris signals but also noise terms, and weak debris features are prone to be distorted, which makes it a severe challenge to debris signature identification and quantitative estimation. In this paper, a debris signature extraction method established on segmentation entropy with an adaptive threshold was proposed, based on which five identification indicators were investigated to improve detection accuracy. The results of the simulations and oil experiment show that the proposed algorithm can effectively identify wear particles and preserve debris signatures.

2.
Water Res ; 252: 121221, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324985

RESUMEN

This study proposes a novel method by forming biogenic K-jarosite coatings on pyrite surfaces driven by Acidithiobacillus ferrooxidans (A. ferrooxidans) to reduce heavy metal release and prevent acid mine drainage (AMD) production. Different thicknesses of K-jarosite coatings (0.7 to 1.1 µm) were able to form on pyrite surfaces in the presence of A. ferrooxidans, which positively correlated with the initial addition of Fe2+ and K+ concentrations. The inhibiting effect of K-jarosite coatings on pyrite oxidation was studied by electrochemical measurements, chemical oxidation tests, and bio-oxidation tests. The experimental results showed that the best passivation performance was achieved when 20 mM Fe2+ and 6.7 mM K+ were initially introduced with a bacterial concentration of 4 × 108 cells·mL-1, reducing chemical and biological oxidation by 70 % and 98 %, respectively (based on the concentration of total iron dissolved into the solution by pyrite oxidation). Similarly, bio-oxidation tests of two mine waste samples also showed sound inhibition effects, which offers a preliminary demonstration of the potential applicability of this method to actual waste rock. This study presents a new perspective on passivating the oxidation of metal sulfide tailings or waste and preventing AMD.


Asunto(s)
Acidithiobacillus , Hierro , Sulfatos , Compuestos Férricos , Sulfuros , Oxidación-Reducción
3.
J Agric Food Chem ; 72(3): 1779-1786, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38215467

RESUMEN

Four P450s were reported to be important for imidacloprid resistance in Nilaparvata lugens, a major insect pest on rice, which was confirmed in this study in an imidacloprid-resistant strain (ImiR). Here we found that only two (CYP4CE1 and CYP6ER1) from these four P450 genes were overexpressed in a nitenpyram-resistant strain (NitR) when compared to a susceptible strain (SUS). CYP4CE1 RNAi reduced nitenpyram and imidacloprid resistance in NitR and ImiR strains, with a greater reduction in nitenpyram resistance. The transcription factor FoxO mediated nitenpyram resistance in NitR and ImiR strains, but it was not differentially expressed among strains. The potential reason for the differential regulation of FoxO on CYP4CE1 expression was mainly from sequence differences in the CYP4CE1 promoter between susceptible and resistant insects. In six FoxO response elements predicted in the CYP4CE1 promoter, the single-nucleotide polymorphisms were frequently detected in over 50% of NitR and ImiR individuals. The luciferase reporter assays showed that two mutations, -650T/G and -2205T/A in two response elements at the positions of -648 and -2200 bp, mainly contributed to the enhanced regulation on CYP4CE1 expression by FoxO in resistant insects. The frequency was over 69% for both -650T/G and -2205T/A detected in NitR and ImiR individuals but less than 20% in SUS insects. In conclusion, CYP4CE1 overexpression importantly contributed to nitenpyram resistance in N. lugens, and two mutations in the CYP4CE1 promoter of resistant insects led to an enhanced regulation on CYP4CE1 expression by FoxO.


Asunto(s)
Hemípteros , Insecticidas , Humanos , Animales , Insecticidas/farmacología , Mutación Puntual , Resistencia a los Insecticidas/genética , Neonicotinoides/metabolismo , Nitrocompuestos/metabolismo , Hemípteros/metabolismo
4.
Ecotoxicol Environ Saf ; 269: 115794, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061084

RESUMEN

The massive accumulation of red mud (RM) and the abuse of antibiotics pose a threat to environment safety and human health. In this study, we synthesized RM-based Prussian blue (RM-PB) by acid solution-coprecipitation method to activate H2O2 to degrade norfloxacin, which reached about 90% degradation efficiency at pH 5 within 60 min and maintained excellent catalytic performance over a wide pH range (3-11). Due to better dispersion and unique pore properties, RM-PB exposed more active sites, thus the RM-PB/H2O2 system produced more reactive oxygen species. As a result, the removal rate of norfloxacin by RM-PB/H2O2 system was 8.58 times and 2.62 times of that by RM/H2O2 system and PB/H2O2 system, respectively. The reactive oxygen species (ROS) produced in the degradation process included ·OH, ·O2- and 1O2, with 1O2 playing a dominant role. The formation and transformation of these ROS was accompanied by the Fe(III)/Fe(II) cycle, which was conducive for the sustained production of ROS. The RM-PB/H2O2 system maintained a higher degradation efficiency after five cycles, and the material exhibited strong stability, with a low iron leaching concentration. Further research showed the degradation process was less affected by Cl-, SO42-, NO3-, and humic acids, but was inhibited by HCO3- and HPO42-. In addition, we also proposed the possible degradation pathway of norfloxacin. This work is expected to improve the resource utilization rate of RM and achieve treating waste with waste.


Asunto(s)
Ferrocianuros , Peróxido de Hidrógeno , Norfloxacino , Humanos , Peróxido de Hidrógeno/química , Especies Reactivas de Oxígeno , Compuestos Férricos , Oxidación-Reducción
5.
Sci China Life Sci ; 67(1): 175-187, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37946067

RESUMEN

Invertebrate species are a natural reservoir of viral genetic diversity, and invertebrate pests are widely distributed in crop fields. However, information on viruses infecting invertebrate pests of crops is limited. In this report, we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields. We identified 296 new RNA viruses and 13 known RNA viruses. These viruses clustered within 31 families, with many highly divergent viruses constituting potentially new families and genera. Of the identified viruses, 13 RNA viruses clustered within the Fiersviridae family of bacteriophages, and 48 RNA viruses clustered within families and genera of mycoviruses. We detected known rice viruses in novel invertebrate hosts at high abundances. Furthermore, some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species. Forty-five potential insect pathogenic RNA viruses were detected in invertebrate species. Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity. Cross-species transmission of RNA viruses was detected between invertebrate hosts. Newly identified viral genomes showed extensive variation for invertebrate viral families or genera. Together, the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species, the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.


Asunto(s)
Virus de Insectos , Oryza , Virus de Plantas , Virus ARN , Animales , Oryza/genética , Invertebrados , Virus ARN/genética , Insectos , Virus de Insectos/genética , Virus de Plantas/genética , Variación Genética , Filogenia , Genoma Viral/genética
6.
AIDS Res Ther ; 20(1): 82, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37981694

RESUMEN

BACKGROUND: Human immunodeficiency virus (HIV) infection is associated with an elevated incidence of cervical cancer, and accelerated disease progression, but the underlying mechanisms are not well understood. This study aimed to investigate the relationship between HIV infection and epithelial-mesenchymal transition (EMT) in cervical cancer. METHODS: Tissue samples from HIV-positive and negative patients with cervical intraepithelial neoplasia (CIN) and cervical cancer were analyzed for EMT-related proteins. Human cervical cancer SiHa cells were treated with HIV Tat and gp120 proteins to test their effects on EMT, migration, and invasion. RESULTS: HIV-positive patients had lower E-cadherin and cytokeratin, and higher N-cadherin and vimentin levels than HIV-negative patients. HIV Tat and gp120 proteins induced EMT, migration, and invasion in SiHa cells. Transcriptome sequencing analysis revealed that, compared to the control group, the protein-treated group showed upregulation of 22 genes and downregulation of 77 genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed the involvement of the Wnt signaling pathway in EMT. Further analysis of gene expression related to this pathway revealed upregulation of DVL1, TCF7, KRT17, and VMAC, while GSK3ß, SFRP2, and CDH1 were downregulated. Immunofluorescence assay demonstrated that HIVgp120 and Tat proteins treatment induced elevated ß-catenin expression with nuclear accumulation in SiHa cells. CONCLUSIONS: The treatment of SiHa cells with HIV Tat and gp120 proteins induces EMT and activates the Wnt/ß-catenin pathway, suggesting that the Wnt/ß-catenin pathway may play a crucial role in promoting EMT progression in cervical lesion tissues of HIV-infected patients.


Asunto(s)
Infecciones por VIH , Neoplasias del Cuello Uterino , Femenino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Línea Celular Tumoral , Productos del Gen tat/farmacología , Transición Epitelial-Mesenquimal/fisiología
7.
J Exp Bot ; 74(22): 6964-6974, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343122

RESUMEN

Vascular tissues serve a dual function in plants, both providing physical support and controlling the transport of nutrients, water, hormones, and other small signaling molecules. Xylem tissues transport water from root to shoot; phloem tissues transfer photosynthates from shoot to root; while divisions of the (pro)cambium increase the number of xylem and phloem cells. Although vascular development constitutes a continuous process from primary growth in the early embryo and meristem regions to secondary growth in the mature plant organs, it can be artificially separated into distinct processes including cell type specification, proliferation, patterning, and differentiation. In this review, we focus on how hormonal signals orchestrate the molecular regulation of vascular development in the Arabidopsis primary root meristem. Although auxin and cytokinin have taken center stage in this aspect since their discovery, other hormones including brassinosteroids, abscisic acid, and jasmonic acid also take leading roles during vascular development. All these hormonal cues synergistically or antagonistically participate in the development of vascular tissues, forming a complex hormonal control network.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema , Raíces de Plantas , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hormonas/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108430

RESUMEN

Mycobacterium tuberculosis (Mtb) has latently infected over two billion people worldwide (LTBI) and caused ~1.6 million deaths in 2021. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared with HIV- LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Plasma samples collected from healthy and HIV-infected individuals were investigated using liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using the online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, and quantitative reverse-transcription PCR (qRT-PCR) were performed using standard procedures to determine the surface markers, cytokines, and other signaling molecule expressions. Seahorse extra-cellular flux assays were used to measure mitochondrial oxidative phosphorylation and glycolysis. Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared with healthy donors. One of the HIV-upregulated metabolites, N-acetyl-L-alanine (ALA), inhibits pro-inflammatory cytokine IFN-γ production by the NK cells of LTBI+ individuals. ALA inhibits the glycolysis of LTBI+ individuals' NK cells in response to Mtb. Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK-cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV-Mtb interaction and providing insights into the implication of nutrition intervention and therapy for HIV-Mtb co-infected patients.


Asunto(s)
Infecciones por VIH , Mycobacterium tuberculosis , Tuberculosis , Humanos , Células Asesinas Naturales
9.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909560

RESUMEN

Background: Mycobacterium tuberculosis ( Mtb ) has latently infected over two billion people worldwide (LTBI) and causes 1.8 million deaths each year. Human immunodeficiency virus (HIV) co-infection with Mtb will affect the Mtb progression and increase the risk of developing active tuberculosis by 10-20 times compared to the HIV-LTBI+ patients. It is crucial to understand how HIV can dysregulate immune responses in LTBI+ individuals. Methods: Plasma samples collected from healthy and HIV-infected individuals were investigated by liquid chromatography-mass spectrometry (LC-MS), and the metabolic data were analyzed using an online platform Metabo-Analyst. ELISA, surface and intracellular staining, flow cytometry, quantitative reverse transcription PCR (qRT-PCR) were performed by standard procedure to determine the surface markers, cytokines and other signaling molecule expression. Seahorse extra cellular flux assays were used to measure the mitochondrial oxidative phosphorylation and glycolysis. Results: Six metabolites were significantly less abundant, and two were significantly higher in abundance in HIV+ individuals compared to healthy donors. One of the HIV-upregulated metabolites, N-Acetyl-L-Alanine (ALA), inhibits pro-inflammatory cytokine IFN-□ production by NK cells of LTBI+ individuals. ALA inhibits glycolysis of LTBI+ individuals' NK cells in response to Mtb . Conclusions: Our findings demonstrate that HIV infection enhances plasma ALA levels to inhibit NK cell-mediated immune responses to Mtb infection, offering a new understanding of the HIV- Mtb interaction and providing the implication of nutrition intervention and therapy for HIV- Mtb co-infected patients.

10.
Chemosphere ; 321: 138128, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36775027

RESUMEN

The formation of arsenic-bearing acid mine drainage (AMD) via the oxidation of arsenopyrite refuse ore has attracted significant attention. Pyrite, as main a concomitant mineral, is a crucial factor that affects the (bio)dissolution of arsenopyrite, but there are still some points on the detailed action mechanism under normal environmental conditions that need further study. In this study, the effect mechanism of pyrite with a systematic pyrite content (0, 10, 25, 50, 75, 90, and 100 wt %) on arsenopyrite oxidation and arsenic release in the presence of Acidithiobacillus ferrooxidans was investigated. The X-ray diffraction (XRD), scanning election microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical analyses were also carried out. Results showed that the existence of pyrite and Acidithiobacillus ferrooxidans significantly accelerated the dissolution of arsenopyrite and the oxidation of As (Ⅲ) to As (Ⅴ), resulting from the galvanic effect, an increase in the Fe3+/Fe2+ ratio and the oxidation-reduction potential (Eh) value, and a decrease in pH level. As the detected main intermediate products, element sulphur was considered as the dominating obstructive factor during arsenopyrite oxidation, while the added pyrite could accelerate its oxidation. Moreover, a close relationship between different mineral proportions and the galvanic effect was also observed and discussed. Finally, suggestions on AMD governance and source control are proposed.


Asunto(s)
Arsénico , Arsénico/química , Solubilidad , Minerales/química , Sulfuros/química , Oxidación-Reducción
11.
J Agric Food Chem ; 71(9): 4036-4042, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36848634

RESUMEN

Cytochrome P450 enzymes metabolize various xenobiotics in insects. Compared to numerous P450s associated with insecticide detoxification and resistance, fewer have been identified to bioactivate proinsecticides in insects. Here we reported that two P450s, CYP4C62 and CYP6BD12, in Nilaparvata lugens could bioactivate chlorpyrifos, an organophosphorus insecticide, into its active ingredient chlorpyrifos-oxon in vivo and in vitro. RNAi knockdown of these two genes significantly reduced the sensitivity to chlorpyrifos and the formation of chlorpyrifos-oxon in N. lugens. Chlorpyrifos-oxon was generated when chlorpyrifos was incubated with the crude P450 enzyme prepared from N. lugens or recombinant CYP4C62 and CYP6BD12 enzymes. The expression reduction of CYP4C62 and CYP6BD12 and alternative splicing in CYP4C62 reduced the oxidation of chlorpyrifos into chlorpyrifos-oxon, which contributed importantly to chlorpyrifos resistance in N. lugens. This study revealed a novel mechanism of insecticide resistance due to the bioactivation reduction, which would be common for all currently used proinsecticides.


Asunto(s)
Cloropirifos , Insecticidas , Insecticidas/farmacología , Empalme Alternativo , Resistencia a Antineoplásicos , Compuestos Organofosforados , Sistema Enzimático del Citocromo P-450/genética
12.
J Environ Manage ; 335: 117540, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841004

RESUMEN

Iron and manganese oxides/biochar composite materials (Fe/Mn-BC) are promising catalysts in the field of advanced oxidation. High purity chemical reagents are popular precursors for preparing Fe/Mn-BC, while the potential of low-cost natural minerals as precursors has been neglected. In this study, high-efficiency Fe/Mn-BC was synthesized by one-step pyrolysis method using hematite, phosphoromanganese, and bagasse. The synthesized Fe/Mn-BC removed 83.7% 2, 4-dichlorophenol (2, 4-DCP) within 30 min, about 8.8 and 10.6 times better than biochar (BC) and Fe/Mn complex, respectively. The removal of 2, 4-DCP in the Fe/Mn-BC + peroxydisulfate (PDS) system was influenced by catalyst dosage, PDS concentration, initial pH, organic acids, and chromium. Sulfate radical (SO4•-) and hydroxyl radicals (•OH) generated by Fe/Mn-BC-activated PDS have similar contribution to the degradation of 2,4-DCP. A possible removal mechanism of 2, 4-DCP in the Fe/Mn-BC + PDS system was proposed based on Electron Spin Resonance spectroscopy, free radical quenching experiments, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical measurement. Fe0 and Fe(II) in Fe/Mn-BC play significant role in catalytic degradation of 2, 4-DCP at the early stage of the reaction (within 0-5 min). Then, the interaction between Mn and BC or structural Mn and structural Fe gradually became dominant in the later stage. Similarly, the electron transfer promoted by biochar also played an important role in this catalysis. This discovery provided a new strategy for developing iron and manganese oxides/biochar composite materials to activate PDS for the elimination of refractory organic pollutants.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Manganeso/química , Carbón Orgánico/química , Óxidos/química , Hierro/química , Minerales , Fenoles , Oxidación-Reducción , Catálisis , Contaminantes Químicos del Agua/química
13.
J Agric Food Chem ; 71(9): 4163-4171, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36812404

RESUMEN

CYP6ER1 overexpression is a prevalent mechanism for neonicotinoid resistance in Nilaparvata lugens. Except for imidacloprid, the metabolism of other neonicotinoids by CYP6ER1 lacked direct evidence. In this study, a CYP6ER1 knockout strain (CYP6ER1-/-) was constructed using the CRISPR/Cas9 strategy. The CYP6ER1-/- strain showed much higher susceptibility to imidacloprid and thiacloprid with an SI (sensitivity index, LC50 of WT/LC50 of CYP6ER1-/-) of over 100, which was 10-30 for four neonicotinoids (acetamiprid, nitenpyram, clothianidin, and dinotefuran) and less than 5 for flupyradifurone and sulfoxaflor. Recombinant CYP6ER1 showed the highest activity to metabolize imidacloprid and thiacloprid and moderate activity for the other four neonicotinoids. Main metabolite identification and oxidation site prediction revealed that CYP6ER1 activities were insecticide structure-dependent. The most potential oxidation site of imidacloprid and thiacloprid was located in the five-membered heterocycle with hydroxylation activity. For the other four neonicotinoids, the potential site was within the ring opening of a five-membered heterocycle, indicating N-desmethyl activity.


Asunto(s)
Hemípteros , Insecticidas , Tiazinas , Animales , Neonicotinoides/farmacología , Insecticidas/farmacología , Tiazinas/farmacología , Hemípteros/genética
14.
J Exp Bot ; 74(6): 1940-1956, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36651677

RESUMEN

Transcriptional networks are crucial to integrate various internal and external signals into optimal responses during plant growth and development. In Arabidopsis thaliana, primary root vasculature patterning and proliferation are controlled by a network centred around the basic Helix-Loop-Helix transcription factor complex, formed by TARGET OF MONOPTEROS 5 (TMO5) and LONESOME HIGHWAY (LHW), which control cell proliferation and division orientation by modulating the cytokinin response and other downstream factors. Despite recent progress, many aspects of the TMO5/LHW pathway are not fully understood. In particular, the upstream regulators of TMO5/LHW activity remain unknown. Here, using a forward genetics approach to identify new factors of the TMO5/LHW pathway, we discovered a novel function of the MYB-type transcription factor, MYB12. MYB12 physically interacts with TMO5 and dampens the TMO5/LHW-mediated induction of direct target gene expression, as well as the periclinal/radial cell divisions. The expression of MYB12 is activated by the cytokinin response, downstream of TMO5/LHW, resulting in a novel MYB12-mediated negative feedback loop that restricts TMO5/LHW activity, to ensure optimal cell proliferation rates during root vascular development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Raíces de Plantas/metabolismo , Retroalimentación , Transactivadores/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , División Celular , Citocininas/metabolismo
15.
Insect Sci ; 30(3): 693-704, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36093889

RESUMEN

The lipid metabolism plays an essential role in the development and reproduction of insects, and lipases are important enzymes in lipid metabolism. In Nilaparvata lugens, an important insect pest on rice, triacylglycerol hydrolytic activities were different among tissues, with high activity in integument, ovary, and fat body, but low activity in intestine. To figure out the tissue-specific triacylglycerol hydrolytic activity, we identified 43 lipases in N. lugens. Of these 43 lipases, 23 belonged to neutral lipases, so this group was selected to perform further experiments on triacylglycerol hydrolysis. The complete motifs of catalytic triads, ß9 loop, and lid motif, are required for the triacylglycerol hydrolytic activity in neutral lipases, which were found in some neutral lipases with high gene expression levels in integument and ovary, but not in intestine. The recombinant proteins of 3 neutral lipases with or without 3 complete motifs were obtained, and the activity determination confirmed the importance of 3 motifs. Silencing XM_022331066.1, which is highly expressed in ovary and with 3 complete motifs, significantly decreased the egg production and hatchability of N. lugens, partially through decline of the lipid metabolism. In summary, at least one-third of important motifs were incomplete in all neutral lipases with high gene expression in intestine, which could partially explain why the lipase activity in intestine was much lower than that in other tissues. The low activity to hydrolyze triacylglycerol in N. lugens intestine might be associated with its food resource and nutrient components, and the ovary-specific neutral lipases were important for N. lugens reproduction.


Asunto(s)
Hemípteros , Femenino , Animales , Hidrólisis , Triglicéridos/metabolismo , Lipasa/genética , Lipasa/metabolismo , Insectos/metabolismo
16.
Pestic Biochem Physiol ; 188: 105230, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464349

RESUMEN

Insect glutathione S-transferases (GSTs) participate in detoxifying insecticides and plant metabolites in two different ways, metabolizing toxic components and remedying oxidative stress. Here in Nilaparvata lugens, a major insect pest on rice, the roles of cytosolic GSTs in resistance to insecticides and to plant defences were evaluated. The over-expression in four resistant strains indicated that NlGSTs1 and NlGSTs2 were essential to resistances to four test insecticides and H2O2 through an antioxidation mechanism. RNAi verified the antioxidation function of NlGSTs1 and NlGSTs2 in the resistances as a common mechanism, regardless of the structural differences among insecticides and H2O2. NlGSTs1 and NlGSTs2 also provided protection for N. lugens against rice defense by the same mechanism, reducing H2O2 levels when N. lugens were fed on the resistant rice variety Mudogo. The antioxidation activity of recombinant NlGSTs1 and NlGSTs2 is higher than their direct detoxification, which supported the ability of these two GSTs to remedy oxidative stress. For oxidative stress remediation as a common mechanism of NlGSTs1 and NlGSTs2 in both insecticide resistance and host adaptability, the development of insecticide resistance might enhance the ability of insects to remedy oxidative stress from feeding on resistant rice variety and thus to lower the resistance level of rice variety to N. lugens. The results call for careful assessment on N. lugens control when both insecticides and resistant rice variety are applied.


Asunto(s)
Insecticidas , Oryza , Resistencia a los Insecticidas/genética , Oryza/genética , Insecticidas/farmacología , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Antioxidantes
17.
Ecotoxicol Environ Saf ; 248: 114301, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410143

RESUMEN

Acetylcholinesterase (AChE) is an essential neurotransmitter hydrolase in nervous systems of animals and its number varies among species. So far, five AChEs have been identified in the natural enemy Pardosa pseudoannulata. Here we found that Ppace1, Ppace2 and Ppace5 were highly expressed in the spider brain, among which the mRNA level of Ppace5, but not Ppace1 and Ppace2, could be up-regulated by organophosphorus insecticides at their sublethal concentrations. In spider brain, the treatment by organophosphorus insecticides at the sublethal concentrations could increase total AChE activity, although high concentrations inhibited the activity. The activity that increased from the sublethal concentration pretreatment could compensate for the activity inhibition due to subsequent application of organophosphorus insecticides at lethal concentrations, and consequently reduce the mortality of spiders. PpAChE1 and PpAChE2 were highly sensitive to organophosphorus insecticides, and their activities would be strongly inhibited by the insecticides. In contrast, PpAChE5 displayed relative insensitivity towards organophosphorus insecticides, but with the highest catalytic efficiency for ACh. That meant the up-regulation of Ppace5 under insecticide exposure was important for maintaining AChE activity in spider brain, when PpAChE1 and PpAChE2 were inhibited by organophosphorus insecticides. The study demonstrated that multiple AChEs in the spider brain worked collaboratively, with part members for maintaining AChE activity and other members responding to organophosphorus inhibition, to provide protection from organophosphorus insecticides. In fields, high concentration insecticides are often applied when ineffective controls of insect pests occur due to relative-low concentration of insecticides in last round application. This application pattern of organophosphorus insecticides provides more chances for P. pseudoannulata to survive and controlling insect pests as a natural enemy.


Asunto(s)
Insecticidas , Arañas , Animales , Acetilcolinesterasa/genética , Insecticidas/toxicidad , Compuestos Organofosforados/toxicidad , Encéfalo , Dolor
18.
Sci Total Environ ; 851(Pt 2): 158200, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049690

RESUMEN

Humic acid has the advantages of wide source, easy availability and environmental friendliness, which may be a good choice for inhibiting chalcopyrite biooxidation and alleviating copper pollution. However, there are few researches on the inhibitory effect and mechanism of humic acid on the biooxidation of chalcopyrite. In order to fill this knowledge gap, this study proposed and validated a novel method for inhibiting chalcopyrite biooxidation by means of humic acid. The results showed that the biooxidation of chalcopyrite could be effectively inhibited by humic acid, which consequently decreased the release of copper ions. Humic acid with a concentration of 120 ppm had the best inhibitory effect, which reduced the biooxidation efficiency of chalcopyrite from 40.7 ± 0.5 % to 29.3 ± 0.8 %. This in turn suggested that humic acid could effectively suppress the pollution of copper under these conditions. The analysis results of solution parameters, mineral surface morphology, mineral phases and element composition showed that humic acid inhibited the growth of Acidithiobacillus ferrooxidans, promoted the formation of jarosite and intensified the passivation of chalcopyrite, which effectively hindered the biooxidation of chalcopyrite, and would help to alleviate the pollution of copper.


Asunto(s)
Cobre , Sustancias Húmicas , Contaminación Ambiental
19.
Front Plant Sci ; 13: 897475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937375

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens (Stål; Hemiptera: Delphacidae) is a piercing-sucking pest that causes serious damage to rice plants by sucking the phloem sap from the plants and transmitting viruses. During courtship, the BPH vibrates its abdomen to produce signals that are transmitted to rice plants through its legs. Male BPHs search, locate, and mate with female BPHs after they exchange courtship signals with each other. Currently, spraying chemical pesticides is still the primary method for controlling BPH populations in paddy fields, although this approach has led to severe environmental pollution. A physical control method based on BPH courtship disruption to reduce the mating rate is a promising strategy for cutting environmental pollution. To acquire effective courtship disruptive signals, we developed a vibration signal recording, monitoring, and playback system for BPHs. Using this system, BPH courtship signals and male competition signals were collected and analyzed to obtain their frequency spectra. Results show that the mean main vibration frequency of female courtship signals is 234 Hz and the mean pulse rate is 23 Hz. The mean main vibration and pulse frequencies of the male courtship signals are 255 Hz and 82 Hz, respectively. Besides, the mean main vibration frequency of the male competition signal is 281 Hz. Seven different forms and frequencies of artificial signals were played back to male BPHs, then the courtship and behavioral responses of male BPHs were analyzed. Results indicate that a pure tone of 225 Hz prevents the males from recognizing female courtship signals. The male reply rate fell from 95.6 to 33.3% and the mean reply delay time increased from 5.3 s to 9.1 s. The reply rates of the other six artificial signals ranged from 42.9 to 83.7%, and the mean reply delays were between 5.0 s and 9.3 s. Therefore, the courtship behavior of BPHs can be disrupted by using specific artificial disruptive signals.

20.
Front Plant Sci ; 13: 972286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035691

RESUMEN

Accurate and timely surveys of rice diseases and pests are important to control them and prevent the reduction of rice yields. The current manual survey method of rice diseases and pests is time-consuming, laborious, highly subjective and difficult to trace historical data. To address these issues, we developed an intelligent monitoring system for detecting and identifying the disease and pest lesions on the rice canopy. The system mainly includes a network camera, an intelligent detection model of diseases and pests on rice canopy, a web client and a server. Each camera of the system can collect rice images in about 310 m2 of paddy fields. An improved model YOLO-Diseases and Pests Detection (YOLO-DPD) was proposed to detect three lesions of Cnaphalocrocis medinalis, Chilo suppressalis, and Ustilaginoidea virens on rice canopy. The residual feature augmentation method was used to narrow the semantic gap between different scale features of rice disease and pest images. The convolution block attention module was added into the backbone network to enhance the regional disease and pest features for suppressing the background noises. Our experiments demonstrated that the improved model YOLO-DPD could detect three species of disease and pest lesions on rice canopy at different image scales with an average precision of 92.24, 87.35 and 90.74%, respectively, and a mean average precision of 90.11%. Compared to RetinaNet, Faster R-CNN and Yolov4 models, the mean average precision of YOLO-DPD increased by 18.20, 6.98, 6.10%, respectively. The average detection time of each image is 47 ms. Our system has the advantages of unattended operation, high detection precision, objective results, and data traceability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...