Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 395-409, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38198215

RESUMEN

Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Pyrus , Factores de Transcripción , Xilema , Xilema/metabolismo , Xilema/genética , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética
2.
Biomolecules ; 10(2)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054132

RESUMEN

Anthocyanin contributes to the coloration of pear fruit and enhances plant defenses. Members of the ethylene response factor (ERF) family play vital roles in hormone and stress signaling and are involved in anthocyanin biosynthesis. Here, PbERF22 was identified from the lanolin-induced red fruit of 'Zaosu' pear (Pyrus bretschneideri Rehd.) using a comparative transcriptome analysis. Its expression level was up- and down-regulated by methyl jasmonate and 1-methylcyclopropene plus lanolin treatments, respectively, which indicated that PbERF22 responded to the jasmonate- and ethylene-signaling pathways. In addition, transiently overexpressed PbERF22 induced anthocyanin biosynthesis in 'Zaosu' fruit, and a quantitative PCR analysis further confirmed that PbERF22 facilitated the expression of anthocyanin biosynthetic structural and regulatory genes. Moreover, a dual luciferase assay showed that PbERF22 enhanced the activation effects of PbMYB10 and PbMYB10b on the PbUFGT promoter. Therefore, PbERF22 responses to jasmonate and ethylene signals and regulates anthocyanin biosynthesis. This provides a new perspective on the correlation between jasmonate-ethylene crosstalk and anthocyanin biosynthesis.


Asunto(s)
Acetatos/metabolismo , Antocianinas/biosíntesis , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Lanolina/farmacología , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Antocianinas/genética , Color , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Frutas/efectos de los fármacos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reguladores/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Pyrus/genética , Pyrus/metabolismo , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
Front Plant Sci ; 5: 795, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25674093

RESUMEN

Boron (B) deficiency has seriously negative effect on citrus production. Carrizo citrange (CC) has been reported as a B-deficiency tolerant rootstock. However, the molecular mechanism of its B-deficiency tolerance remained not well-explored. To understand the molecular basis of citrus rootstock to B-deficiency, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potential important or novel genes responsive to B-deficiency. Firstly four SSH libraries were constructed for the root tissue of two citrus rootstocks CC and Trifoliate orange (TO) to compare B-deficiency treated and non-treated plants. Then 7680 clones from these SSH libraries were used to construct a cDNA array and microarray analysis was carried out to verify the expression changes of these clones upon B-deficiency treatment at various time points compared to the corresponding controls. A total of 139 unigenes that were differentially expressed upon B-deficiency stress either in CC or TO were identified from microarray analysis, some of these genes have not previously been reported to be associated with B-deficiency stress. In this work, several genes involved in cell wall metabolism and transmembrane transport were identified to be highly regulated under B-deficiency stress, and a total of 23 metabolic pathways were affected by B-deficiency, especially the lignin biosynthesis pathway, nitrogen metabolism, and glycolytic pathway. All these results indicated that CC was more tolerant than TO to B-deficiency stress. The B-deficiency responsive genes identified in this study could provide further information for understanding the mechanisms of B-deficiency tolerance in citrus.

4.
PLoS One ; 8(6): e65737, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755275

RESUMEN

Corky split vein caused by boron (B) deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st) phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd) and 3(rd) phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.


Asunto(s)
Boro/deficiencia , Citrus sinensis/genética , Enfermedades de las Plantas , Haz Vascular de Plantas/genética , Citrus sinensis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Ontología de Genes , Genes de Plantas , Redes y Vías Metabólicas/genética , Haz Vascular de Plantas/metabolismo , Haz Vascular de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...