Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(45): e202311223, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37721360

RESUMEN

Zeolitic metal-organic frameworks (ZMOFs) have emerged as one of the most promsing catalysts for energy conversion, but they suffer from either weak bonding between metal-organic cubes (MOCs) that decrease their stability during catalysis processes or low activity due to inadequate active sites. In this work, through ligand-directing strategy, we successfully obtain an unprecedented bismuth-based ZMOF (Bi-ZMOF) featuring a ACO topological crystal structure with strong coordination bonding between the Bi-based cages. As a result, it enables efficient reduction of CO2 to formic acid (HCOOH) with Faradaic efficiency as high as 91 %. A combination of in situ surface-enhanced infrared absorption spectroscopy and density functional theory calculation reveals that the Bi-N coordination contributes to facilitating charge transfer from N to Bi atoms, which stabilize the intermediate to boost the reduction efficiency of CO2 to HCOOH. This finding highlights the importance of the coordination environment of metal active sites on electrocatalytic CO2 reduction. We believe that this work will offer a new clue to rationally design zeolitic MOFs for catalytic reaction.

2.
Adv Mater ; 34(39): e2205186, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934874

RESUMEN

Assembling molecular catalytic centers into crosslinked networks is widely used to fabricate heterogeneous catalysts but they often suffer loss in activity and selectivity accompanied by unclear causes. Here, a strategy for the construction of heterogeneous catalysts to induce activity and selectivity by bottom-up introduction of segregated electron-conduction and mass-transport interfaces into the catalytic materials is reported. The catalytic skeletons are designed to possess different π orderings for electron motion and the open channels are tailored to install finely engineered walls for mass transport, so that origins of activity and selectivity are correlated. The resultant covalent organic framework catalysts with ordered π skeletons and solvophobic pores increase activity by two orders of magnitude, enhance selectivity and energy efficiency by 70-fold, and broaden the voltage range, to promote CO2 transformation under ambient conditions. The results open a way to precise interfacial design of actionable heterogeneous catalysts for producing feedstocks from CO2 .

3.
Adv Mater ; 34(17): e2102290, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35052010

RESUMEN

Covalent organic frameworks (COFs), an emerging class of organic crystalline polymers with highly oriented structures and permanent porosity, can adopt 2D or 3D architectures depending on the different topological diagrams of the monomers. Notably, 2D COFs have particularly gained much attention due to the extraordinary merits of their extended in-plane π-conjugation and topologically ordered columnar π-arrays. These properties together with high crystallinity, large surface area, and tunable porosity distinguish 2D COFs as an ideal candidate for the fabrication of functional materials. Herein, this review surveys the recent research advances in 2D COFs with special emphasis on the preparation of 2D COF powders, single crystals, and thin films, as well as their advanced optical, electrical, and magnetic functionalities. Some challenging issues and potential research outlook for 2D COFs are also provided for promoting their development in terms of structure, synthesis, and functionalities.

4.
J Am Chem Soc ; 143(42): 17526-17534, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34644063

RESUMEN

At the gas-liquid interface, the confined synthesis of metal-organic framework (MOF) films has been extensively developed by spreading an ultrathin oil layer on the aqueous surface as a reactor. However, this interface is susceptible to various disturbances and incapable of synthesizing large-area crystalline MOF films. Herein, we developed a polymer-assisted space-confined strategy to synthesize large-area films by blending poly(methyl methacrylate) (PMMA) into the oil layer, which improved the stability of the gas-liquid interface and the self-shrinkage of the oil layer on the water surface. Meanwhile, the as-synthesized MOFs as a quasi-solid substrate immobilized the edge of the oil layer, which maintained a large spreading area. Thanks to this synergistic effect, we synthesized the freestanding MOF-based film with a foot-level (0.66 ft) lateral dimension, which is the largest size reported so far. Besides, due to the phase separation of the two components, the MOF-PMMA composite film combined the conductivity of MOFs (1.13 S/m) with the flexibility of PMMA and exhibited excellent mechanical properties. More importantly, this strategy could be extended to the preparation of other MOFs, coordination polymers (CPs), and even inorganic material composite films, bringing light to the design and large-scale synthesis of various composite films for practical applications.

5.
ACS Appl Mater Interfaces ; 13(15): 17852-17860, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33825449

RESUMEN

Conductive polymers are considered promising electrode materials for organic transistors, but the reported devices with conductive polymer electrodes generally suffer from considerable contact resistance. Currently, it is still highly challenging to pattern conductive polymer electrodes on organic semiconductor surfaces with good structure and interface quality. Herein, we develop an in situ polymerization strategy to directly pattern the top-contacted polypyrrole (PPy) electrodes on hydrophobic surfaces of organic semiconductors by microchannel templates, which is also applicable on diverse hydrophobic and hydrophilic surfaces. Remarkably, a width-normalized contact resistance as low as 1.01 kΩ·cm is achieved in the PPy-contacted transistors. Both p-type and n-type organic field-effect transistors (OFETs) exhibit ideal electrical characteristics, including almost hysteresis-free, low threshold voltage, and good stability under long-term test. The facile patterning method and high device performance indicate that the in situ polymerization strategy in confined microchannels has application prospects in all-organic, transparent, and flexible electronics.

6.
Small ; 16(29): e2001847, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32510861

RESUMEN

Electrochemical CO2 reduction (ECR) to value-added chemicals and fuels is regarded as an effective strategy to mitigate climate change caused by CO2 from excess consumption of fossil fuels. To achieve CO2 conversion with high faradaic efficiency, low overpotential, and excellent product selectivity, rational design and synthesis of efficient electrocatalysts is of significant importance, which dominates the development of ECR field. Individual organic molecules or inorganic catalysts have encountered a bottleneck in performance improvement owing to their intrinsic shortcomings. Very recently, organic-inorganic hybrid nanomaterials as electrocatalysts have exhibited high performance and interesting reaction processes for ECR due to the integration of the advantages of both heterogeneous and homogeneous catalytic processes, attracting widespread interest. In this work, the recent advances in designing various organic-inorganic hybrid nanomaterials at the atomic and molecular level for ECR are systematically summarized. Particularly, the reaction mechanism and structure-performance relationship of organic-inorganic hybrid nanomaterials toward ECR are discussed in detail. Finally, the challenges and opportunities toward controlled synthesis of advanced electrocatalysts are proposed for paving the development of the ECR field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...