Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Neuro Oncol ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134889

RESUMEN

BACKGROUND: The cell cycle is tightly regulated by checkpoints, playing a vital role in controlling its progression and timing. Cancer cells exploit the G2/M checkpoint, which serves as a resistance mechanism against genotoxic anti-cancer treatments, allowing for DNA repair prior to cell division. Manipulating cell cycle timing has emerged as a potential strategy to augment the effectiveness of DNA damage-based therapies. METHODS: In this study, we conducted a forward genome wide CRISPR/Cas9 screening with repeated exposure to the alkylating agent temozolomide (TMZ) to investigate the mechanisms underlying tumor cell survival under genotoxic stress. RESULTS: Our findings revealed that canonical DNA repair pathways, including ATM/Fanconi and mismatch repair, determine cell fate under genotoxic stress. Notably, we identified the critical role of PKMYT1, in ensuring cell survival. Depletion of PKMYT1 led to overwhelming TMZ-induced cytotoxicity in cancer cells. Isobologram analysis demonstrated potent drug synergy between alkylating agents and a Myt1 kinase inhibitor, RP-6306. Mechanistically, inhibiting Myt1 forced G2/M-arrested cells into an unscheduled transition to the mitotic phase without complete resolution of DNA damage. This forced entry into mitosis, along with persistent DNA damage, resulted in severe mitotic abnormalities. Ultimately, these aberrations led to mitotic exit with substantial apoptosis. Preclinical animal studies demonstrated that the combination regimen involving TMZ and RP-6306 prolonged the overall survival of glioma-bearing mice. CONCLUSION: Collectively, our findings highlight the potential of targeting cell cycle timing through Myt1 inhibition as an effective strategy to enhance the efficacy of current standard cancer therapies, potentially leading to improved disease outcomes.

2.
Clin Cancer Res ; 29(12): 2199-2209, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37018064

RESUMEN

PURPOSE: Missense mutated von Hippel Lindau (VHL) protein (pVHL) maintains intrinsic function but undergoes proteasomal degradation and tumor initiation and/or progression in VHL disease. Vorinostat can rescue missense mutated pVHL and arrest tumor growth in preclinical models. We asked whether short-term oral vorinostat could rescue pVHL in central nervous system hemangioblastomas in patients with germline missense VHL. PATIENTS AND METHODS: We administered oral vorinostat to 7 subjects (ages 46.0 ± 14.5 years) and then removed symptomatic hemangioblastomas surgically (ClinicalTrials.gov identifier NCT02108002). RESULTS: Vorinostat was tolerated without serious adverse events by all patients. pVHL expression was elevated in neoplastic stromal cells compared with untreated hemangioblastomas from same patients. We found transcriptional suppression of downstream hypoxia-inducible factor (HIF) effectors. Mechanistically, vorinostat prevented Hsp90 recruitment to mutated pVHL in vitro. The effects of vorinostat on the Hsp90-pVHL interaction, pVHL rescue, and transcriptional repression of downstream HIF effectors was independent of the location of the missense mutation on the VHL locus. We confirmed a neoplastic stromal cell-specific effect in suppression of protumorigenic pathways with single-nucleus transcriptomic profiling. CONCLUSIONS: We found that oral vorinostat treatment in patients with germline missense VHL mutations has a potent biologic effect that warrants further clinical study. These results provide biologic evidence to support the use of proteostasis modulation for the treatment of syndromic solid tumors involving protein misfolding. Proteostasis modulation with vorinostat rescues missense mutated VHL protein. Further clinical trials are needed to demonstrate tumor growth arrest.


Asunto(s)
Productos Biológicos , Neoplasias del Sistema Nervioso Central , Hemangioblastoma , Enfermedad de von Hippel-Lindau , Humanos , Enfermedad de von Hippel-Lindau/genética , Vorinostat , Proteostasis , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
3.
Clin Cancer Res ; 29(7): 1305-1316, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36648507

RESUMEN

PURPOSE: Mutations of the isocitrate dehydrogenase (IDH) gene are common genetic mutations in human malignancies. Increasing evidence indicates that IDH mutations play critical roles in malignant transformation and progression. However, the therapeutic options for IDH-mutated cancers remain limited. In this study, the investigation of patient cohorts revealed that the PI3K/protein kinase B (AKT) signaling pathways were enhanced in IDH-mutated cancer cells. EXPERIMENTAL DESIGN: In this study, we investigated the gene expression profile in IDH-mutated cells using RNA sequencing after the depletion of AKT. Gene set enrichment analysis (GSEA) and pathway enrichment analysis were used to discover altered molecular pathways due to AKT depletion. We further investigated the therapeutic effect of the AKT inhibitor, ipatasertib (Ipa), combined with temozolomide (TMZ) in cell lines and preclinical animal models. RESULTS: GSEA and pathway enrichment analysis indicated that the PI3K/AKT pathway significantly correlated with Nrf2-guided gene expression and ferroptosis-related pathways. Mechanistically, AKT suppresses the activity of GSK3ß and stabilizes Nrf2. Moreover, inhibition of AKT activity with Ipa synergizes with the genotoxic agent TMZ, leading to overwhelming ferroptotic cell death in IDH-mutated cancer cells. The preclinical animal model confirmed that combining Ipa and TMZ treatment prolonged survival. CONCLUSIONS: Our findings highlighted AKT/Nrf2 pathways as a potential synthetic lethality target for IDH-mutated cancers.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioma , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Isocitrato Deshidrogenasa/genética , Factor 2 Relacionado con NF-E2/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ferroptosis/genética , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Mutación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
4.
Essays Biochem ; 66(4): 413-422, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35611837

RESUMEN

Cancer stem cells (CSCs) are a small population of cells in human malignancies that resemble the biology of human pluripotent stem cells. CSCs are closely related to the critical hallmarks in human cancers, ranging from oncogenesis to disease progression, therapeutic resistance, and overall outcome. Mutations in isocitrate dehydrogenase (IDH) were recently identified as founder mutations for human cancers. An increasing amount of evidence indicates that IDH mutations are closely related to the establishment and maintenance of CSCs. Biosynthesis of oncometabolite, metabolic reprogramming, and epigenetic shifts establish distinctive molecular signatures in IDH-mutated CSCs. Additionally, IDH mutation and IDH-related pathways could be valuable molecular targets to impact the CSC components in human cancers and to improve the disease outcome.


Asunto(s)
Isocitrato Deshidrogenasa , Neoplasias , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación , Neoplasias/genética , Células Madre Neoplásicas/metabolismo
5.
J Natl Cancer Inst ; 114(1): 130-138, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34415331

RESUMEN

BACKGROUND: Pheochromocytoma and paraganglioma (PPGL) are neuroendocrine tumors with frequent mutations in genes linked to the tricarboxylic acid cycle. However, no pathogenic variant has been found to date in succinyl-CoA ligase (SUCL), an enzyme that provides substrate for succinate dehydrogenase (SDH; mitochondrial complex II [CII]), a known tumor suppressor in PPGL. METHODS: A cohort of 352 patients with apparently sporadic PPGL underwent genetic testing using a panel of 54 genes developed at the National Institutes of Health, including the SUCLG2 subunit of SUCL. Gene deletion, succinate levels, and protein levels were assessed in tumors where possible. To confirm the possible mechanism, we used a progenitor cell line, hPheo1, derived from a human pheochromocytoma, and ablated and re-expressed SUCLG2. RESULTS: We describe 8 germline variants in the guanosine triphosphate-binding domain of SUCLG2 in 15 patients (15 of 352, 4.3%) with apparently sporadic PPGL. Analysis of SUCLG2-mutated tumors and SUCLG2-deficient hPheo1 cells revealed absence of SUCLG2 protein, decrease in the level of the SDHB subunit of SDH, and faulty assembly of the complex II, resulting in aberrant respiration and elevated succinate accumulation. CONCLUSIONS: Our study suggests SUCLG2 as a novel candidate gene in the genetic landscape of PPGL. Large-scale sequencing may uncover additional cases harboring SUCLG2 variants and provide more detailed information about their prevalence and penetrance.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Mutación de Línea Germinal , Humanos , Paraganglioma/genética , Paraganglioma/patología , Feocromocitoma/genética , Feocromocitoma/patología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
6.
Ann N Y Acad Sci ; 1506(1): 142-163, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34850398

RESUMEN

The test for the cancer stem cell (CSC) hypothesis is to find a target expressed on all, and only CSCs in a patient tumor, then eliminate all cells with that target that eliminates the cancer. That test has not yet been achieved, but CSC diagnostics and targets found on CSCs and some other cells have resulted in a few clinically relevant therapies. However, it has become apparent that eliminating the subset of tumor cells characterized by self-renewal properties is essential for long-term tumor control. CSCs are able to regenerate and initiate tumor growth, recapitulating the heterogeneity present in the tumor before treatment. As great progress has been made in identifying and elucidating the biology of CSCs as well as their interactions with the tumor microenvironment, the time seems ripe for novel therapeutic strategies that target CSCs to find clinical applicability. On May 19-21, 2021, researchers in cancer stem cells met virtually for the Keystone eSymposium "Cancer Stem Cells: Advances in Biology and Clinical Translation" to discuss recent advances in the understanding of CSCs as well as clinical efforts to target these populations.


Asunto(s)
Congresos como Asunto/tendencias , Neoplasias/genética , Células Madre Neoplásicas/fisiología , Informe de Investigación , Investigación Biomédica Traslacional/tendencias , Microambiente Tumoral/fisiología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Neoplasias/metabolismo , Investigación Biomédica Traslacional/métodos
7.
Front Endocrinol (Lausanne) ; 12: 731096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616365

RESUMEN

Carotid body paragangliomas (PGLs) are rare neuroendocrine tumors that develop within the adventitia of the medial aspect of the carotid bifurcation. Carotid body PGLs comprise about 65% of head and neck paragangliomas, however, their genetic background remains elusive. In the present study, we report one case of carotid body PGL with a somatic mutation in the gene encoding isocitrate dehydrogenase 2 (IDH2). The missense mutation in IDH2 resulted in R172G amino acid substitution, which exhibits neomorphic activity and production of D-2-hydroxyglutarate.


Asunto(s)
Tumor del Cuerpo Carotídeo/patología , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/genética , Mutación , Paraganglioma/patología , Tumor del Cuerpo Carotídeo/enzimología , Tumor del Cuerpo Carotídeo/genética , Femenino , Humanos , Persona de Mediana Edad , Paraganglioma/enzimología , Paraganglioma/genética , Pronóstico
8.
Cells ; 10(9)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34571995

RESUMEN

Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an "oncometabolite", D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.


Asunto(s)
Glioma/metabolismo , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Metilación de ADN , Glioma/genética , Glioma/fisiopatología , Glutaratos/efectos adversos , Humanos , Hipoxia/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutación , Transducción de Señal/fisiología
9.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34359671

RESUMEN

Pheochromocytoma (PHEO) and paraganglioma (PGL) are rare neuroendocrine tumors derived from neural crest cells. Germline variants in approximately 20 PHEO/PGL susceptibility genes are found in about 40% of patients, half of which are found in the genes that encode succinate dehydrogenase (SDH). Patients with SDH subunit B (SDHB)-mutated PHEO/PGL exhibit a higher likelihood of developing metastatic disease, which can be partially explained by the metabolic cell reprogramming and redox imbalance caused by the mutation. Reactive oxygen species (ROS) are highly reactive molecules involved in a multitude of important signaling pathways. A moderate level of ROS production can help regulate cellular physiology; however, an excessive level of oxidative stress can lead to tumorigenic processes including stimulation of growth factor-dependent pathways and the induction of genetic instability. Tumor cells effectively exploit antioxidant enzymes in order to protect themselves against harmful intracellular ROS accumulation, which highlights the essential balance between ROS production and scavenging. Exploiting ROS accumulation can be used as a possible therapeutic strategy in ROS-scavenging tumor cells. Here, we focus on the role of ROS production in PHEO and PGL, predominantly in SDHB-mutated cases. We discuss potential strategies and approaches to anticancer therapies by enhancing ROS production in these difficult-to-treat tumors.

10.
Pharmacol Ther ; 228: 107922, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34171339

RESUMEN

Glioma is one of the most common and lethal brain tumors. Surgical resection followed by radiotherapy plus chemotherapy is the current standard of care for patients with glioma. The existence of resistance to genotoxic therapy, as well as the nature of tumor heterogeneity greatly limits the efficacy of glioma therapy. DNA damage repair pathways play essential roles in many aspects of glioma biology such as cancer progression, therapy resistance, and tumor relapse. O6-methylguanine-DNA methyltransferase (MGMT) repairs the cytotoxic DNA lesion generated by temozolomide (TMZ), considered as the main mechanism of drug resistance. In addition, mismatch repair, base excision repair, and homologous recombination DNA repair also play pivotal roles in treatment resistance as well. Furthermore, cellular mechanisms, such as cancer stem cells, evasion from apoptosis, and metabolic reprogramming, also contribute to TMZ resistance in gliomas. Investigations over the past two decades have revealed comprehensive mechanisms of glioma therapy resistance, which has led to the development of novel therapeutic strategies and targeting molecules.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Daño del ADN/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Humanos
11.
Cancer Res ; 81(11): 2820-2823, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33762356

RESUMEN

Oncometabolites are pathognomonic hallmarks in human cancers, including glioma, leukemia, neuroendocrine tumors, and renal cancer. Oncometabolites are aberrantly accumulated from disrupted Krebs cycle and affect the catalytic activity of α-ketoglutarate-dependent dioxygenases. Oncometabolites indicate distinct cancer-related patterns ranging from oncogenesis and metabolism to therapeutic resistance. Here we discuss the current understanding of oncometabolites as well as the controversies and challenges associated with oncometabolite-driven cancers. New insights into the relationship between cancer and oncometabolites will elucidate novel therapeutic avenues for improved cancer treatment.


Asunto(s)
Carcinogénesis , Ciclo del Ácido Cítrico , Metaboloma , Neoplasias/patología , Humanos , Neoplasias/metabolismo
12.
Nat Commun ; 12(1): 614, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504762

RESUMEN

Infiltrating gliomas are devastating and incurable tumors. Amongst all gliomas, those harboring a mutation in isocitrate dehydrogenase 1 mutation (IDH1mut) acquire a different tumor biology and clinical manifestation from those that are IDH1WT. Understanding the unique metabolic profile reprogrammed by IDH1 mutation has the potential to identify new molecular targets for glioma therapy. Herein, we uncover increased monounsaturated fatty acids (MUFA) and their phospholipids in endoplasmic reticulum (ER), generated by IDH1 mutation, that are responsible for Golgi and ER dilation. We demonstrate a direct link between the IDH1 mutation and this organelle morphology via D-2HG-induced stearyl-CoA desaturase (SCD) overexpression, the rate-limiting enzyme in MUFA biosynthesis. Inhibition of IDH1 mutation or SCD silencing restores ER and Golgi morphology, while D-2HG and oleic acid induces morphological defects in these organelles. Moreover, addition of oleic acid, which tilts the balance towards elevated levels of MUFA, produces IDH1mut-specific cellular apoptosis. Collectively, these results suggest that IDH1mut-induced SCD overexpression can rearrange the distribution of lipids in the organelles of glioma cells, providing new insight into the link between lipid metabolism and organelle morphology in these cells, with potential and unique therapeutic implications.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Mutación/genética , Orgánulos/metabolismo , Fosfolípidos/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Glioblastoma/patología , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Modelos Biológicos , Oligodendroglioma/patología , Estearoil-CoA Desaturasa/metabolismo
13.
Pharmacol Ther ; 217: 107664, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810525

RESUMEN

Nuclear factor-erythroid 2-related factor 2 (NRF2) is a master regulator of a series of cytoprotective genes, which protects cells from stress conditions such as reactive oxygen species (ROS) and electrophiles. Besides its pivotal role in cellular physiology and stress response, several recent advances revealed that NRF2-governed pathways are extensively exploited in cancer cells, and play critical roles in granting growth advantage, supporting cancer metabolism, and promoting malignant transformation. In the present review, we focus on the regulatory mechanisms of NRF2 and its roles in cancer biology. We also discuss the value of targeting NRF2-associated pathways as a means of developing future cancer therapeutics.


Asunto(s)
Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/fisiopatología , Carcinógenos/farmacología , Resistencia a Antineoplásicos/fisiología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias/genética , Oncogenes/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo
14.
Biomedicines ; 8(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825279

RESUMEN

Mutations in isocitrate dehydrogenase (IDH) are commonly observed in lower-grade glioma and secondary glioblastomas. IDH mutants confer a neomorphic enzyme activity that converts α-ketoglutarate to an oncometabolite D-2-hydroxyglutarate, which impacts cellular epigenetics and metabolism. IDH mutation establishes distinctive patterns in metabolism, cancer biology, and the therapeutic sensitivity of glioma. Thus, a deeper understanding of the roles of IDH mutations is of great value to improve the therapeutic efficacy of glioma and other malignancies that share similar genetic characteristics. In this review, we focused on the genetics, biochemistry, and clinical impacts of IDH mutations in glioma.

15.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575619

RESUMEN

Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.

16.
Proc Natl Acad Sci U S A ; 117(18): 9964-9972, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32312817

RESUMEN

Isocitrate dehydrogenase (IDH) mutation is a common genetic abnormality in human malignancies characterized by remarkable metabolic reprogramming. Our present study demonstrated that IDH1-mutated cells showed elevated levels of reactive oxygen species and higher demands on Nrf2-guided glutathione de novo synthesis. Our findings showed that triptolide, a diterpenoid epoxide from Tripterygium wilfordii, served as a potent Nrf2 inhibitor, which exhibited selective cytotoxicity to patient-derived IDH1-mutated glioma cells in vitro and in vivo. Mechanistically, triptolide compromised the expression of GCLC, GCLM, and SLC7A11, which disrupted glutathione metabolism and established synthetic lethality with reactive oxygen species derived from IDH1 mutant neomorphic activity. Our findings highlight triptolide as a valuable therapeutic approach for IDH1-mutated malignancies by targeting the Nrf2-driven glutathione synthesis pathway.


Asunto(s)
Diterpenos/farmacología , Glioma/tratamiento farmacológico , Isocitrato Deshidrogenasa/genética , Factor 2 Relacionado con NF-E2/genética , Fenantrenos/farmacología , Sistema de Transporte de Aminoácidos y+/genética , Animales , Vías Biosintéticas/efectos de los fármacos , Línea Celular Tumoral , Compuestos Epoxi/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/patología , Glutamato-Cisteína Ligasa/genética , Glutatión/metabolismo , Humanos , Ratones , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Mutaciones Letales Sintéticas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Br J Cancer ; 122(11): 1580-1589, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32291392

RESUMEN

Isocitrate dehydrogenase (IDH) enzymes catalyse the oxidative decarboxylation of isocitrate and therefore play key roles in the Krebs cycle and cellular homoeostasis. Major advances in cancer genetics over the past decade have revealed that the genes encoding IDHs are frequently mutated in a variety of human malignancies, including gliomas, acute myeloid leukaemia, cholangiocarcinoma, chondrosarcoma and thyroid carcinoma. A series of seminal studies further elucidated the biological impact of the IDH mutation and uncovered the potential role of IDH mutants in oncogenesis. Notably, the neomorphic activity of the IDH mutants establishes distinctive patterns in cancer metabolism, epigenetic shift and therapy resistance. Novel molecular targeting approaches have been developed to improve the efficacy of therapeutics against IDH-mutated cancers. Here we provide an overview of the latest findings in IDH-mutated human malignancies, with a focus on glioma, discussing unique biological signatures and proceedings in translational research.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Deshidrogenasa/genética , Animales , Transformación Celular Neoplásica/genética , Humanos , Mutación
18.
Cancers (Basel) ; 12(4)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224866

RESUMEN

Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in lower grade gliomas. The neomorphic enzyme activity of IDH mutants leads to tumor formation through epigenetic alteration, dysfunction of dioxygenases, and metabolic reprogramming. However, it remains elusive as to how IDH mutants regulate the pathways associated with oncogenic transformation and aggressiveness. In the present study, by using unbiased transcriptomic profiling, we showed that IDH1 mutations result in substantial changes in the gene sets that govern cellular motility, chemotaxis, and invasion. Mechanistically, rapamycin-insensitive companion of mammalian target of rapamycin (Rictor)/Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling plays an essential role in the motility and proliferation of IDH1-mutated cells by prompting cytoskeleton reorganization, lamellipodia formation, and enhanced endocytosis. Targeting the Rictor/Rac1 pathway suppresses IDH1-mutated cells by limiting endocytosis and cell proliferation. Overall, our findings indicate a novel metabolic reprogramming mechanism of IDH1-mutated cells by exploiting metabolites from the extracellular milieu. Targeting the Rictor/Rac1 pathway could be an alternative therapeutic strategy for IDH1-mutated malignancies.

19.
Aging (Albany NY) ; 12(7): 5781-5791, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32235007

RESUMEN

Hypoxia-inducible factors (HIFs) regulate oxygen sensing and expression of genes involved in angiogenesis and erythropoiesis. Polycythemia has been observed in patients with hepatocellular carcinoma (HCC), but the underlying molecular basis remains unknown. Liver tissues from 302 HCC patients, including 104 with polycythemia, were sequenced for HIF2A mutations. A germline HIF2A mutation was detected in one HCC patient with concurrent polycythemia. Three additional family members carried this mutation, but none exhibited polycythemia or were diagnosed with HCC. The gain-of-function mutation resulted in a HIF-2α protein that was transcribed normally but resistant to degradation. HIF-2α target genes EDN1, EPO, GNA14, and VEGF were significantly upregulated in the tumor bed but not in the surrounding liver tissue. Polycythemia resolved upon total resection of the tumor tissue. This newly described HIF2A mutation may promote HCC oncogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma Hepatocelular/genética , Mutación con Ganancia de Función , Mutación de Línea Germinal , Neoplasias Hepáticas/genética , Policitemia/genética , Adulto , Carcinoma Hepatocelular/patología , Análisis Mutacional de ADN , Humanos , Neoplasias Hepáticas/patología , Masculino , Policitemia/patología
20.
Clin Cancer Res ; 26(14): 3868-3880, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32152203

RESUMEN

PURPOSE: Pheochromocytomas and paragangliomas (PCPG) are usually benign neuroendocrine tumors. However, PCPGs with mutations in the succinate dehydrogenase B subunit (SDHB) have a poor prognosis and frequently develop metastatic lesions. SDHB-mutated PCPGs exhibit dysregulation in oxygen metabolic pathways, including pseudohypoxia and formation of reactive oxygen species, suggesting that targeting the redox balance pathway could be a potential therapeutic approach. EXPERIMENTAL DESIGN: We studied the genetic alterations of cluster I PCPGs compared with cluster II PCPGs, which usually present as benign tumors. By targeting the signature molecular pathway, we investigated the therapeutic effect of ascorbic acid on PCPGs using in vitro and in vivo models. RESULTS: By investigating PCPG cells with low SDHB levels, we show that pseudohypoxia resulted in elevated expression of iron transport proteins, including transferrin (TF), transferrin receptor 2 (TFR2), and the divalent metal transporter 1 (SLC11A2; DMT1), leading to iron accumulation. This iron overload contributed to elevated oxidative stress. Ascorbic acid at pharmacologic concentrations disrupted redox homeostasis, inducing DNA oxidative damage and cell apoptosis in PCPG cells with low SDHB levels. Moreover, through a preclinical animal model with PCPG allografts, we demonstrated that pharmacologic ascorbic acid suppressed SDHB-low metastatic lesions and prolonged overall survival. CONCLUSIONS: The data here demonstrate that targeting redox homeostasis as a cancer vulnerability with pharmacologic ascorbic acid is a promising therapeutic strategy for SDHB-mutated PCPGs.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Feocromocitoma/tratamiento farmacológico , Succinato Deshidrogenasa/deficiencia , Animales , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Ácido Ascórbico/uso terapéutico , Línea Celular Tumoral/trasplante , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Hierro/metabolismo , Ratones , Mutación , Estrés Oxidativo/efectos de los fármacos , Paraganglioma , Feocromocitoma/genética , Feocromocitoma/patología , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...