Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Onco Targets Ther ; 12: 10749-10761, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849483

RESUMEN

BACKGROUND: Baicalein, a natural flavonoid derived from traditional Chinese herb Scutellaria baicalensis Georg (known as Huang Qin in Chinese), has been reported to exhibit notable antitumor activity in various cancer cells, including breast cancer. However, the detailed mechanisms underlying its induced apoptosis as a prooxidant in breast cancer cells are still unknown. MATERIALS AND METHODS: In this study, we investigated the effect of endogenous copper on cytotoxic activity of baicalin against human breast cancer MCF-7 cells in vitro. RESULTS: Baicalein could remarkably reduce the cell viability in both dose- and time-dependent manners in MCF-7 cells but with lower cytotoxic effects on normal breast epithelial cells, MCF-10A. Such cell death could be prevented by pretreatment with Cu (I)-specific chelator neocuproine (Neo) and reactive oxygen species (ROS) scavengers. Meanwhile, baicalein could induce MCF-7 cell morphological changes, promote apoptotic cell death and increase the apoptotic cell number. Moreover, DCHF-DA staining, flow cytometry and Western blotting analyses proved that baicalein triggered the mitochondrial-dependent apoptotic pathway, as indicated by enhancement the level of intracellular ROS, disruption of mitochondrial membrane potential (ΔΨm), downregulation of anti-apoptotic protein Bcl-2, upregulation of pro-apoptotic protein Bax, release of cytochrome C and activation of caspase-9 and caspase-3 in MCF-7 cells. The pretreatment with Neo remarkably weakened these effects of baicalein. Furthermore, we confirmed that the prooxidant action of baicalein involved the direct production of hydroxyl radicals through redox recycling of copper ions. CONCLUSION: These findings suggested that baicalein, acting as a prooxidant, could trigger apoptosis in MCF-7 cells occurs via the ROS-mediated intrinsic mitochondria-dependent pathway.

2.
J Biomed Res ; 32(5): 424-433, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30355852

RESUMEN

Identifying sensitive and specific biomarkers for early detection of cancer is immensely imperative for early diagnosis and treatment and better clinical outcome of cancer patients. This study aimed to construct a specific DNA methylation pattern of cancer suppressor genes and explore the feasibility of applying cell-free DNA based methylation as a biomarker for early diagnosis of esophageal squamous cell carcinoma (ESCC). We recruited early stage ESCC patients from Yangzhong County, China. The Illumina Infinium 450K Methylation BeadChip was used to construct a genome-wide DNA methylation profile. Then, differentiated genes were selected for the validation study using the Sequenom MassARRAY platform. The frequency of methylation was compared between cancer tissues, matched cell-free DNAs and normal controls. The specific methylation profiles were constructed, and the sensitivity and specificity were calculated. Seven CG sites in three genes CASZ1, CDH13 and ING2 were significantly hypermethylated in ESCC as compared with normal controls. A significant correlation was found between the methylation of DNA extracted from cancer tissues and matched plasma cell-free DNA, either for individual CG site or for cumulative methylation analysis. The sensitivity and specificity reached 100% at an appropriate cut-point using these specific methylation biomarkers. This study revealed that aberrant DNA methylation is a promising biomarker for molecular diagnosis of esophageal cancer. Hypermethylation of CASZ1, CDH13 and ING2 detected in plasma cell-free DNA can be applied as a potential noninvasive biomarker for diagnosis of esophageal cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...