Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(20): 4340-4345, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38743916

RESUMEN

An unconventional [1 + 1 + 1 + 1 + 1 + 1] annulation process was developed for the construction of ß,ß-dithioketones by merging C-C and C-S bond cleavage. In this reaction, rongalite concurrently served as triple C1 units, dual sulfur(II) synthons, and a reductant for the first time. Mechanism investigation indicated that the reaction involved the self-mediated valence state change of rongalite. By performing this step-economical method, the challenging construction of C5-substituted 1,3-dithiane can be achieved under mild and simple conditions.

2.
J Chem Phys ; 159(24)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38131482

RESUMEN

Although it plays a critical role in the photophysics and catalysis of lanthanides, spin-orbit coupling of electrons on individual lanthanide atoms in small clusters is not well understood. The major objective of this work is to probe such coupling of the praseodymium (Pr) 4f and 6s electrons in Pr2O2 and Pr2O2+. The approach combines mass-analyzed threshold ionization spectroscopy and spin-orbit multiconfiguration second-order quasi-degenerate perturbation theory. The energies of six ionization transitions are precisely measured; the adiabatic ionization energy of the neutral cluster is 38 045 (5) cm-1. Most of the electronic states involved in these transitions are identified as spin-orbit coupled states consisting of two or more electron spins. The electron configurations of these states are 4f46s2 for the neutral cluster and 4f46s for the singly charged cation, both in planar rhombus-type structures. The spin-orbit splitting due to the coupling of the electrons on the separate Pr atoms is on the order of hundreds of wavenumbers.

3.
Org Lett ; 25(39): 7220-7224, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37767992

RESUMEN

Herein, we disclose a straightforward approach to access transition-metal-free reductive N-formylation of nitroarenes. This reaction integrates the dual role of rongalite, which acts as a reductant and a C1 building block concurrently. This provides an alternative method for the synthesis of N-aryl formamides from nitroarenes, including the construction of a C-N bond. The utility of this protocol was demonstrated by scale-up synthesis and late-stage functionalizations of complex molecules.

4.
Org Lett ; 25(13): 2294-2299, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-36951380

RESUMEN

A concise and efficient hydrodefluorination process was developed for the synthesis of gem-difluoroalkenes. This reaction employs rongalite as a masked proton source and does not require any additional catalysts or reductants. Notably, trifluoromethyl alkenes having both terminal and internal double bonds are compatible with this process, allowing for a wider range of substrates. The successful late-stage functionalizations of pharmaceuticals and gram-scale syntheses were used to demonstrate the viability of this method.

5.
J Phys Chem A ; 126(42): 7613-7620, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36223649

RESUMEN

Dehydrogenation and C-C bond cleavage of 1-butyne by the excited states of La and Ce atoms are investigated in laser-ablation metal molecular beams. The excited states of the metal atoms are prepared by resonant excitation, detected by resonant two-photon ionization spectroscopy, and the reaction products are monitored by photoionization time-of-flight mass spectrometry. The reactivities of La* [5d2(3F)6p (4G5/2°)] and Ce* [4f5d(3F°)6s6p(3P°) (5H5)] excited states are observed to be higher than those of the initial states of the corresponding metal atoms. The higher reactivities of the excited states are attributed to their higher energies and favorable electron configurations to form two covalent bonds of the metal-insertion intermediates. Although both excited La and Ce atoms show increased reactivities, the enhancement for Ce is much more pronounced than that of La, which cannot be explained by electron configurations alone. The larger reactivity enhancement from the initial states to the excited state of the Ce atom than that of La is due to the longer lifetime of the Ce excited state.

6.
J Chem Phys ; 157(11): 114304, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36137790

RESUMEN

The precise ionization energy of praseodymium oxide (PrO) seeded in supersonic molecular beams is measured with mass-analyzed threshold ionization (MATI) spectroscopy. A total of 33 spin-orbit (SO) states of PrO and 23 SO states of PrO+ are predicted by second-order multiconfigurational quasi-degenerate perturbation (MCQDPT2) theory. Electronic transitions from four low-energy SO levels of the neutral molecule to the ground state of the singly charged cation are identified by combining the MATI spectroscopic measurements with the MCQDPT2 calculations. The precise ionization energy is used to reassess the ionization energies and the reaction enthalpies of the Pr + O → PrO+ + e- chemi-ionization reaction reported in the literature. An empirical formula that uses atomic electronic parameters is proposed to predict the ionization energies of lanthanide monoxides, and the empirical calculations match well with available precise experimental measurements.

7.
J Chem Phys ; 156(8): 084303, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35232202

RESUMEN

Vibronic spectra of lutetium oxide (LuO) seeded in supersonic molecule beams are investigated with mass-analyzed threshold ionization (MATI) spectroscopy and second-order multiconfigurational quasi-degenerate perturbation (MCQDPT2) theory. Six states of LuO and four states of LuO+ are located by the MCQDPT2 calculations, and an a3Π(LuO+) ← C2Σ+ (LuΟ) transition is observed by the MATI measurement. The vibronic spectra show abnormal vibrational intervals for both the neural and cation excited states, and the abnormality is attributed to vibrational perturbations induced by interactions with neighboring states.

8.
J Virol ; 96(8): e0016922, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35343762

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Asunto(s)
Vacunas contra la COVID-19 , Infecciones por Coronavirus , Protección Cruzada , Glicoproteína de la Espiga del Coronavirus , Vacunas de Productos Inactivados , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Quirópteros , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Protección Cruzada/inmunología , Humanos , Ratones , Ratones Transgénicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Productos Inactivados/inmunología , Zoonosis Virales/prevención & control
9.
J Anal Methods Chem ; 2022: 5952436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35083093

RESUMEN

Mice are the most frequently used animals in pharmacokinetic studies; however, collecting series of blood samples from mice is difficult because of their small sizes and tiny vessels. In addition, due to the small sample size, it is problematic to perform high required quantification. Thus, present work aims to find an effective strategy for overcoming these challenges using trans-resveratrol as a tool drug. Based on the idea of a joint technology, the capillary microsampling (CMS) was chosen for blood sample collection from mice after delivery of trans-resveratrol (150 mg/kg) by gavage, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of trans-resveratrol and its main metabolites. All the mouse blood samples were exactly collected by CMS without obvious deviation. This provided credible samples for subsequent quantitative analysis. The HPLC-MS/MS method was found to be sensitive, accurate, and repeatable, and the pharmacokinetic parameters for all analytes were comparable with those reported in previous studies. However, the present joint technology offers the advantages of less animal damage, easy for sample preparation, and improved reliability. It has overcome some of the major limitations revealed in previous pharmacokinetic studies in mice and therefore provides a more effective option for future studies.

10.
J Chem Phys ; 155(3): 034302, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293886

RESUMEN

Metal-mediated N-H and C-H bond activation of aliphatic amines is an effective strategy for synthesizing biologically important molecules. Ln (Ln = La and Ce) atom reactions with dimethylamine are carried out in a pulsed-laser vaporization supersonic molecular beam source. A series of dehydrogenation species are observed with time-of-flight mass spectrometry, and the dehydrogenated Ln-containing species in the formula Ln(CH2NCH3) are characterized by single-photon mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. The theoretical calculations include density functional theory for both Ln species and multiconfiguration self-consistent field and quasi-degenerate perturbation theory for the Ce species. The MATI spectrum of La(CH2NCH3) consists of a single vibronic band system, which is assigned to the ionization of the doublet ground state of N-methyl-lanthanaaziridine. The MATI spectrum of Ce(CH2NCH3) displays two vibronic band systems, which are attributed to the ionization of two-pair lowest-energy spin-orbit coupling states of N-methyl-ceraaziridine. Both metallaaziridines are three-membered metallacycles and formed by the thermodynamically and kinetically favorable concerted dehydrogenation of the amino group and one of the methyl groups.

11.
J Phys Chem A ; 125(9): 1941-1948, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33651628

RESUMEN

Mass-analyzed threshold ionization (MATI) spectroscopy was used to measure the vibronic spectra of LnO (Ln = La and Ce). Single-reference coupled cluster and relativistic multireference configuration calculations were carried out to compare with the measured vibronic energies. The spectrum of LaO displays a single vibronic band system, while that of CeO shows multiple ones. The ionization energies of LaO and CeO are measured as 5.2446(6) and 5.3332(6) eV, respectively, which are a 100-fold improvement over the literature values. The vibrational energies of the neutral molecule and corresponding ion reveal the charge effect on the metal-oxygen bond of both species. The single band system in the spectrum of LaO arises from the transition of the ground state of the neutral molecule with the La(6s1)O(2p6) valence configuration to the ground state of the singly charged ion with the La(6s0)O(2p6) configuration. The multiple band systems in the spectrum of CeO are attributed to the spin-orbit coupling for the Ce(4f16s1)O(2p6) configuration of the neutral molecule and an excited state for the Ce(4f1)O(2p6) configuration of the ion.

12.
Acta Pharmacol Sin ; 42(1): 27-35, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32123300

RESUMEN

Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Medicamentos Herbarios Chinos/efectos adversos , Fallopia multiflora/efectos adversos , Inmunidad Innata/efectos de los fármacos , Hígado/efectos de los fármacos , Inmunidad Adaptativa/genética , Animales , Pueblo Asiatico , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/toxicidad , Fallopia multiflora/toxicidad , Antígeno HLA-B35/genética , Humanos , Tolerancia Inmunológica/fisiología , Lipopolisacáridos/toxicidad
13.
Beilstein J Nanotechnol ; 11: 606-619, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318321

RESUMEN

Biomass-derived carbon dots (CDs) are biocompatible and have potential for a variety of applications, including bioimaging and biosensing. In this work, we use ground soybean residuals to synthesize carbon nanoparticles by hydrothermal carbonization (HTC), annealing at high temperature, and laser ablation (LA) in a NH4OH solution. The carbon nanoparticles synthesized with the HTC process (HTC-CDs) exhibit photoluminescent characteristics with strong blue emission. The annealing of the HTC-processed carbon particles in the range of 250 to 850 °C causes a loss of the photoluminescent characteristics of the CDs without any significant change in the microstructure (amorphous structure) of the carbon particles. The LA processing of the annealed HTC-processed carbon particles introduces nitrogen-containing surface-functional groups and leads to the recovery of the photoluminescent features that are different from those of the HTC-CDs and dependent on the fraction of nitrogen in the surface-functional groups. The photoluminescence of both the HTC-CDs and LA-CDs is largely due to the presence of N-containing surface-functional groups. The quantum yield of the LA-CDs is more constant than that of the HTC-CDs under continuous UV excitation and does not exhibit a significant reduction after 150 min of excitation. The methods used in this work provide a simple and green strategy to introduce N-surface-functional groups to carbon nanoparticles made from biomass and biowaste and to produce stable photoluminescent CDs with excellent water-wettability.

14.
J Chem Phys ; 152(14): 144304, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295351

RESUMEN

A Ce atom reaction with propene is carried out in a pulsed laser vaporization molecule beam source. Several Ce-hydrocarbon species formed by the C-H and C-C bond activation of propene are observed by time-of-flight mass spectrometry, and Ce(C3Hn) (n = 4 and 6) are characterized by mass-analyzed threshold ionization (MATI) spectroscopy and density functional theory, multiconfiguration, and relativistic quantum chemical calculations. The MATI spectrum of each species consists of two vibronic band systems, each with several vibronic bands. Ce(C3H6) is identified as an inserted species with Ce inserting into an allylic C-H bond of propene and Ce(C3H4) as a metallocycle through 1,2-vinylic dehydrogenation. Both species have a Cs structure with the Ce 4f16s1 ground valence electron configuration in the neutral molecule and the Ce 4f1 configuration in the singly charged ion. The two vibronic band systems observed for each species are attributed to the ionization of two pairs of the lowest spin-orbit coupled states with each pair being nearly degenerate.

15.
J Chem Phys ; 153(6): 064304, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287438

RESUMEN

Ln (Ln = La and Ce) atom reactions with methylamine are carried out in a pulsed-laser vaporization supersonic molecular beam source. A series of dehydrogenation species are observed with time-of-flight mass spectrometry, and the dehydrogenated Ln-containing species in the formula Ln(NCH3) are characterized by mass-analyzed threshold ionization (MATI) spectroscopy and density functional theory and multiconfiguration spin-orbit coupling computations. The MATI spectrum of La(NCH3) consists of two vibronic band systems that are assigned to the ionization of the 2A1 ground state of the C3v isomer La(N-CH3) and the 2A' ground state of the Cs isomer La(NH-CH2). The MATI spectrum of Ce(NCH3) also displays two band systems, which are attributed to the ionization of the low-energy spin-orbit coupling states of the C3v isomer Ce(N-CH3). Ln(N-CH3) is formed by the concerted dehydrogenation of the amino group, while La(NH-CH2) is formed by the dehydrogenation of both amino and methyl groups. Ce(NH-CH2) is presumably formed in the reaction based on the computational predictions but not observed by the spectroscopic measurements.

16.
J Chem Phys ; 153(6): 064701, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287440

RESUMEN

Upconverting nanoparticles (UCNPs) composed of NaYF4 and doped with photoactive Yb3+ and Er3+ (NaYF4:Yb/Er) are highly desirable for many biological applications, but obtaining stable dispersions of UCNPs is challenging. Traditional synthetic methods often use complicated synthetic steps, produce toxic side products, and require post modifications to make UCNPs more dispersible in aqueous solutions. In this study, we demonstrate that laser ablation in liquid (LAL) is a novel approach to synthesize water-dispersible and -stable UCNPs with advantages of particle-size tuning, in situ coating of UCNPs with capping agents, no use of toxic or high boiling point solvents, and short reaction times. NaYF4:Yb/Er UCNPs were produced through LAL of annealed targets using water as the liquid, and their compositions and properties were investigated at a laser fluence of 0.57 J cm-2-6.22 J cm-2 by direct capping with citric acid and ethylene glycol and by comparing with the UCNPs prepared from the traditional hydrothermal method. Low laser fluences produced polydisperse particles consisting of no photoactive species through a thermal evaporation mechanism, while high laser fluences generated UCNPs with more uniform morphologies and compositions similar to the target material by an explosive ejection mechanism. The inclusion of capping agents during LAL allowed for direct coating of the UCNP surface without the need of post modifications, and the concentrations of capping agents affected the UCNP photoluminescence lifetimes. As compared to the hydrothermal method, the LAL-prepared samples showed better size control and no degradation of the capping agents.

17.
J Chem Phys ; 151(12): 124307, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575165

RESUMEN

Ce atom reactions with ethylene, 2-butene, and isobutene are carried out in a pulsed laser vaporization molecule beam source. Ce-containing species are observed with time-of-flight mass spectrometry, and Ce(C4H6) is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and relativistic quantum chemical calculations. Two structural isomers are identified for Ce(C4H6): one is the tetrahedronlike Ce[C(CH2)3] in C3v symmetry and the other is the five-membered metallocyclic Ce(CH2CHCHCH2) in Cs. The MATI spectrum of the C3v isomer exhibits two vibronic band systems separated by 88 cm-1, while that of the Cs isomer displays three split by 60 and 101 cm-1. The multiple band systems are attributed to spin-orbit splitting and vibronic transitions involving metal-hydrocarbon and hydrocarbon-based vibrations. The splitting in the C3v isomer arises from interactions of two triplet and two singlet states at the lowest energies, while each splitting in the Cs isomer involves two triplets and a singlet. Although the Ce atom has ground electron configuration 4f15d16s2, Ce valence electron configurations in both isomers are 4f16s1 in the neutral ground state and 4f1 in the ion. The remaining Ce 5d electrons in the isolated atom are spin paired in molecular orbitals that are a bonding combination between Ce 5dπ and hydrocarbon π* orbitals.

18.
Sci Total Environ ; 686: 869-877, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31200307

RESUMEN

Jarosites are secondary iron-hydroxyl-sulfate minerals and widely occur in bioleaching, acid mine drainage, and acid sulfate soil environments. Anaerobic reductive dissolution of jarosites is yet to be methodically examined. In this study, we explored the bio-dissolution of jarosites by Acidithiobacillus ferrooxidans (At. ferrooxidans) by using hydrogen in batch experiments. After bio-dissolution by At. ferrooxidans for 22 d, ferrous ion concentrations reached 10.07 mM (biologically produced jarosites), 7.68 mM (potassium jarosite), and 1.45 mM (lead jarosite). Strengthening the dissolved jarosites by decreasing the initial pH (pH < 2.0) or by adding citric acid (1, 5, and 10 mM) was inefficient for bio-dissolution owing to restricted cellular activity. The pathways of bio-dissolution should include direct contact bio-dissolution and indirect bio-dissolution and relate to the solubility of jarosites in a bio-dissolution system. The results demonstrate that anaerobic reductive bio-dissolution of jarosites by At. ferrooxidans using hydrogen shows potential. This study also provides opportunities to contribute to the development of the bioleaching field via the aerobic/anaerobic cycle using a single strain to control and reuse jarosites in situ.


Asunto(s)
Acidithiobacillus/metabolismo , Compuestos Férricos/metabolismo , Sulfatos/metabolismo , Electrones , Compuestos Ferrosos , Hidrógeno/metabolismo , Hierro/metabolismo , Minerales/metabolismo , Minería , Oxidación-Reducción
19.
J Chem Phys ; 149(23): 234301, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30579310

RESUMEN

Ln (Ln = La and Ce) atom reactions with ammonia are carried out in a pulsed laser vaporization supersonic molecular beam source. Lanthanide-containing species are observed with time-of-flight mass spectrometry, and LnNH molecules are characterized by mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. The theoretical calculations include density functional theory for both Ln species and a scalar relativity correction, electron correlation, and spin-orbit coupling for the Ce species. The MATI spectrum of LaNH exhibits a single vibronic band system with a strong origin band and two weak vibronic progressions, whereas the spectrum of CeNH displays two band systems separated by 75 cm-1 with each being like the LaNH spectrum. By comparing with the theoretical calculations, both LaNH and CeNH are identified as linear molecules with C∞v symmetry, and the two vibronic progressions are attributed to the excitations of Ln-N stretching and Ln-N-H bending modes in the ions. The additional band system observed for CeNH is due to the spin-orbit splitting from the interactions of triplet and singlet states. The ground valence electron configurations of LaNH and CeNH are La 6s1 and Ce 4f16s1, and the ionization of each species removes the Ln 6s1 electron. The remaining two electrons that are associated with the isolated Ln atoms or ions are in a doubly degenerate molecular orbital that is a bonding combination between Ln 5dπ and N pπ orbitals.

20.
J Chem Phys ; 148(19): 194302, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30307187

RESUMEN

La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C-C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...