Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854023

RESUMEN

Huntington's disease (HD) is caused by expansion of the polyglutamine stretch in huntingtin protein (HTT) resulting in hallmark aggresomes/inclusion bodies (IBs) composed of mutant huntingtin protein (mHTT) and its fragments. Stimulating autophagy to enhance mHTT clearance is considered a potential therapeutic strategy for HD. Our recent evaluation of the autophagic-lysosomal pathway (ALP) in human HD brain reveals upregulated lysosomal biogenesis and relatively normal autophagy flux in early Vonsattel grade brains, but impaired autolysosome clearance in late grade brains, suggesting that autophagy stimulation could have therapeutic benefits as an earlier clinical intervention. Here, we tested this hypothesis by crossing the Q175 HD knock-in model with our autophagy reporter mouse TRGL ( T hy-1- R FP- G FP- L C3) to investigate in vivo neuronal ALP dynamics. In the Q175 and/or TRGL/Q175 mice, mHTT was detected in autophagic vacuoles and also exhibited high level colocalization with autophagy receptors p62/SQSTM1 and ubiquitin in the IBs. Compared to the robust lysosomal pathology in late-stage human HD striatum, ALP alterations in Q175 models are also late-onset but milder that included a lowered phospho-p70S6K level, lysosome depletion and autolysosome elevation including more poorly acidified autolysosomes and larger-sized lipofuscin granules, reflecting impaired autophagic flux. Administration of a mTOR inhibitor to 6-mo-old TRGL/Q175 normalized lysosome number, ameliorated aggresome pathology while reducing mHTT-, p62- and ubiquitin-immunoreactivities, suggesting beneficial potential of autophagy modulation at early stages of disease progression.

2.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854113

RESUMEN

Accumulated levels of mutant huntingtin protein (mHTT) and its fragments are considered contributors to the pathogenesis of Huntington's disease (HD). Although lowering mHTT by stimulating autophagy has been considered a possible therapeutic strategy, the role and competence of autophagy-lysosomal pathway (ALP) during HD progression in the human disease remains largely unknown. Here, we used multiplex confocal and ultrastructural immunocytochemical analyses of ALP functional markers in relation to mHTT aggresome pathology in striatum and the less affected cortex of HD brains staged from HD2 to HD4 by Vonsattel neuropathological criteria compared to controls. Immunolabeling revealed the localization of HTT/mHTT in ALP vesicular compartments labeled by autophagy-related adaptor proteins p62/SQSTM1 and ubiquitin, and cathepsin D (CTSD) as well as HTT-positive inclusions. Although comparatively normal at HD2, neurons at later HD stages exhibited progressive enlargement and clustering of CTSD-immunoreactive autolysosomes/lysosomes and, ultrastructurally, autophagic vacuole/lipofuscin granules accumulated progressively, more prominently in striatum than cortex. These changes were accompanied by rises in levels of HTT/mHTT and p62/SQSTM1, particularly their fragments, in striatum but not in the cortex, and by increases of LAMP1 and LAMP2 RNA and LAMP1 protein. Importantly, no blockage in autophagosome formation and autophagosome-lysosome fusion was detected, thus pinpointing autophagy substrate clearance deficits as a basis for autophagic flux declines. The findings collectively suggest that upregulated lysosomal biogenesis and preserved proteolysis maintain autophagic clearance in early-stage HD, but failure at advanced stages contributes to progressive HTT build-up and potential neurotoxicity. These findings support the prospect that ALP stimulation applied at early disease stages, when clearance machinery is fully competent, may have therapeutic benefits in HD patients.

3.
Int Immunopharmacol ; 131: 111899, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513576

RESUMEN

The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.


Asunto(s)
Inmunidad Innata , Rinitis Alérgica , Humanos , Linfocitos , Citocinas , Inflamación
4.
Environ Toxicol ; 39(3): 1601-1616, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009667

RESUMEN

Hepatocellular carcinoma (HCC) is a globally prevalent malignancy, marked by genetic heterogeneity and intricate tumor microenvironment interactions. In this study, we undertook a detailed single-cell analysis of six active HCC patients, highlighting strong correlations between gene expression levels and cellular characteristics. UMAP clustering revealed seven distinct cell categories with associated gene expressions. A divergence was observed in tumor cells into high and low cuproptosis groups, each associated with distinct pathways: oxidative stress for the high cuproptosis group and inflammatory and angiogenesis pathways for the low group. CellChat analysis on the TCGA-LIHC cohort displayed unique intercellular interactions among hepatocytes, T cells, and other cells, with pathways like COLLAGEN and VEGF being pivotal. Functional enrichment analyses exposed pathways enriched between cuproptosis groups, with KEGG emphasizing diseases like Parkinson's. COX survival analysis identified key prognostic genes, revealing distinct survival rates between risk groups in TCGA and GSE14520 cohorts. Mutation data highlighted missense mutations, with TTN, TP53, and CTNNB1 being the most mutated in HCC. Immune infiltration analysis via CIBERSORTx indicated differences between risk groups in NK cells, neutrophils, and other cells. Our drug sensitivity investigation showed significant correlations between model genes and drug responsiveness, emphasizing the importance of patient risk stratification for therapeutic approaches. Further, ATP6V1G1 was recognized in its role in apoptosis and migration in HCC cells. In conclusion, our findings illuminate the complexities of HCC progression, potential predictive genetic markers for drug response, and the pivotal role of ATP6V1G1, suggesting avenues for targeted therapeutic strategies in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Genómica , Hepatocitos , Apoptosis , Microambiente Tumoral
5.
ACS Pharmacol Transl Sci ; 6(8): 1155-1163, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588758

RESUMEN

We investigated a novel 4-phenoxy-quinoline-based scaffold that mislocalizes the essential mitotic kinase, Aurora kinase B (AURKB). Here, we evaluated the impact of halogen substitutions (F, Cl, Br, and I) on this scaffold with respect to various drug parameters. Br-substituted LXY18 was found to be a potent and orally bioavailable disruptor of cell division, at sub-nanomolar concentrations. LXY18 prevents cytokinesis by blocking AURKB relocalization in mitosis and exhibits broad-spectrum antimitotic activity in vitro. With a favorable pharmacokinetic profile, it shows widespread tissue distribution including the blood-brain barrier penetrance and effective accumulation in tumor tissues. More importantly, it markedly suppresses tumor growth. The novel mode of action of LXY18 may eliminate some drawbacks of direct catalytic inhibition of Aurora kinases. Successful development of LXY18 as a clinical candidate for cancer treatment could enable a new, less toxic means of antimitotic attack that avoids drug resistance mechanisms.

6.
J Cell Mol Med ; 27(19): 2945-2955, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37494130

RESUMEN

Prolonged exposure of the peritoneum to high glucose dialysate leads to the development of peritoneal fibrosis (PF), and apoptosis of peritoneal mesothelial cells (PMCs) is a major cause of PF. The aim of this study is to investigate whether Astragaloside IV could protect PMCs from apoptosis and alleviate PF. PMCs and rats PF models were induced by high glucose peritoneal fluid. We examined the pathology of rat peritoneal tissue by HE staining, the thickness of rat peritoneal tissue by Masson's staining, the number of mitochondria and oxidative stress levels in peritoneal tissue by JC-1 and DHE fluorescence staining, and mitochondria-related proteins and apoptosis-related proteins such as PGC-1α, NRF1, TFAM, Caspase3, Bcl2 smad2 were measured. We used hoechst staining and flow cytometry to assess the apoptotic rate of PMCs in the PF model, and further validated the observed changes in the expressions of PGC-1α, NRF1, TFAM, Caspase3, Bcl2 smad2 in PMCs. We further incubated PMCs with MG-132 (proteasome inhibitor) and Cyclohexylamine (protein synthesis inhibitor). The results demonstrated that Astragaloside IV increased the expression of PGC-1α by reducing the ubiquitination of PGC-1α. It was further found that the protective effects of Astragaloside IV on PMCs were blocked when PGC-1α was inhibited. In conclusion, Astragaloside IV effectively alleviated PF both in vitro and in vivo, possibly by promoting PGC-1α to enhance mitochondrial synthesis to reduce apoptotic effects.


Asunto(s)
Fibrosis Peritoneal , Ratas , Animales , Fibrosis Peritoneal/patología , Peritoneo/patología , Apoptosis , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
7.
J Pharm Biomed Anal ; 232: 115415, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120975

RESUMEN

This study investigated the metabolism of LXY18, a quinolone-based compound that suppresses tumorigenesis by blocking AURKB localization. Metabolite profiling of LXY18 in liver microsomes from six species and human S9 fractions revealed that LXY18 undergoes various conserved metabolic reactions, such as N-hydroxylation, N-oxygenation, O-dealkylation, and hydrolysis, resulting in ten metabolites. These metabolites were produced through a combination of CYP450 enzymes, and non-CYP450 enzymes including CES1, and AO. Two metabolites, M1 and M2 were authenticated by chemically synthesized standards. M1 was the hydrolyzed product catalyzed by CES1 whereas M2 was a mono-N-oxidative derivative catalyzed by a CYP450 enzyme. AO was identified as the enzyme responsible for the formation of M3 with the help of AO-specific inhibitors and LXY18 analogs, 5b and 5c. M1 was the intermediate of LXY18 to produce M7, M8, M9, and M10. LXY18 potently inhibited 2C19 with an IC50 of 290 nM but had a negligible impact on the other CYP450s, indicating a low risk of drug-drug interaction. Altogether, the study provides valuable insights into the metabolic process of LXY18 and its suitability as a drug candidate. The data generated serves as a significant reference point for conducting further safety assessments and optimizing drug development.


Asunto(s)
Aurora Quinasa B , Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Mitosis , Humanos , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Microsomas Hepáticos/metabolismo , Oxidación-Reducción
8.
Bioorg Med Chem ; 80: 117173, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36696874

RESUMEN

We combined a mechanism-informed phenotypic screening (MIPS) assay with a structural simplification strategy to guide the discovery of compounds that disrupt the localization of the mitotic regulator, Aurora kinase B (AURKB), rather than inhibiting its catalytic activity. An initial hit 4-(4-methylthiophen-2-yl)-N-(4-(quinolin-4-yloxy)phenyl)phthalazin-1-amine was identified after screening an in-house library of small molecules and phenocopied the loss of function mutations in AURKB without inhibiting its catalytic activity. We isolated this hit compound activity to its 4-phenoxy-quinoline moiety. The fragment was further optimized into a class of new chemical entities that potently disrupt the mitotic localization of AURKB at low nanomolar concentrations and consequently elicit severe growth inhibition in diverse human cancer cell lines. A lead compound, N-(3-methoxy-5-(6-methoxyquinolin-4-yl)oxy)phenyl)acetamide possessed desirable pharmacokinetic properties such as AUC0-∞: 227.15 [ng∙h/mL/(mg/kg)]; Cmax: 3378.52 ng/mL T1/2: 3.52 h; and F%: 42 % and produced the AURKB-inhibitory phenotypes in a mouse xenograft model. A lead compound is a powerful tool for interrogating the regulation of AURKB and has the potential to be further developed as a first-in-class oncology therapeutic.


Asunto(s)
Neoplasias , Quinolinas , Humanos , Ratones , Animales , Aurora Quinasa B , Fenotipo , Aurora Quinasa A/metabolismo
9.
Eur J Med Chem ; 245(Pt 1): 114904, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36413818

RESUMEN

Activity-based drug screens have successfully led to the development of various inhibitors of the catalytic activity of aurora kinases (AURKs), major regulatory kinases of cell division. Disrupting the localization of AURKB, rather than its catalytic activity, represents a largely unexplored alternative approach to disabling AURKB-dependent processes. Localization disruptors could be just as specific as direct inhibitors of AURKB activity, may bypass their off-target and select on-target toxicities, and are likely less susceptible to drug resistance resulting from mutations of the AURKB catalytic site. In this study, we demonstrate that the pan-AURK inhibitor AMG900 works at a low concentration not by inhibiting the phosphorylation of H3 at Ser10, an AURKB substrate, but by disrupting the mitotic localization of AURKB. Structural deletion studies pinpoint this undescribed activity to the 2-phenoxy-3,4'-bipyridine moiety of AMG900. Guided by a mechanism-informed phenotypic screening (MIPS) assay, the drug fragment is optimized into a novel class of inhibitors that, at low nanomolar concentrations, can disable AURKB through disruption of its mitotic localization and have desirable oral PK properties. Hierarchical clustering of cell fitness profiles reveals that these compounds cluster with each other, rather than with known AURK inhibitors such as AMG900 and VX-680. Validation studies in mice demonstrate that compound 15a elicits mitotic arrest and apoptosis in NCI-H23 human lung adenocarcinoma xenografts, resulting in a pronounced suppression of tumor growth. The discovery and optimization of compounds that disrupt AURKB localization are successfully facilitated by MIPS. Our findings suggest that 2-phenoxy-3, 4'-bipyridine derivatives have the potential to be further developed as effective therapeutics for the treatment of malignancy by delocalizing AURKB.


Asunto(s)
Compuestos Heterocíclicos , Neoplasias Pulmonares , Humanos , Animales , Ratones , Mitosis , Aurora Quinasas , Fosforilación , Aurora Quinasa B
10.
Autophagy ; 19(4): 1277-1292, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36131358

RESUMEN

How macroautophagy/autophagy influences neurofilament (NF) proteins in neurons, a frequent target in neurodegenerative diseases and injury, is not known. NFs in axons have exceptionally long half-lives in vivo enabling formation of large stable supporting networks, but they can be rapidly degraded during Wallerian degeneration initiated by a limited calpain cleavage. Here, we identify autophagy as a previously unrecognized pathway for NF subunit protein degradation that modulates constitutive and inducible NF turnover in vivo. Levels of NEFL/NF-L, NEFM/NF-M, and NEFH/NF-H subunits rise substantially in neuroblastoma (N2a) cells after blocking autophagy either with the phosphatidylinositol 3-kinase (PtdIns3K) inhibitor 3-methyladenine (3-MA), by depleting ATG5 expression with shRNA, or by using both treatments. In contrast, activating autophagy with rapamycin significantly lowers NF levels in N2a cells. In the mouse brain, NF subunit levels increase in vivo after intracerebroventricular infusion of 3-MA. Furthermore, using tomographic confocal microscopy, immunoelectron microscopy, and biochemical fractionation, we demonstrate the presence of NF proteins intra-lumenally within autophagosomes (APs), autolysosomes (ALs), and lysosomes (LYs). Our findings establish a prominent role for autophagy in NF proteolysis. Autophagy may regulate axon cytoskeleton size and responses of the NF cytoskeleton to injury and disease.


Asunto(s)
Autofagia , Filamentos Intermedios , Ratones , Animales , Autofagia/fisiología , Proteolisis , Filamentos Intermedios/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neuronas/metabolismo
11.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292957

RESUMEN

Small molecule inhibitors of aurora kinases are currently being investigated in oncology clinical trials. The long-term effects of these inhibitors on proliferating euploid cells have not been adequately studied. We examined the effect of the reversible pan-aurora kinase inhibitor VX-680 on p53-competent human euploid cells. Circumscribed treatment with VX-680 blocked cytokinesis and arrested cells in G1 or a G1-like status. Approximately 70% of proliferatively arrested cells had 4N DNA content and abnormal nuclei. The remaining 30% of cells possessed 2N DNA content and normal nuclei. The proliferative arrest was not due to the activation of the tumor suppressor Rb and was instead associated with rapid induction of the p53-p21 pathway and p16. The induction was particularly evident in cells with nuclear abnormalities but was independent of activation of the DNA damage response. All of these effects were correlated with the potent inhibition of aurora kinase B. After release from VX-680, the cells with normal nuclei robustly resumed proliferation whereas the cells with abnormal nuclei underwent senescence. Irrespective of their nuclear morphology or DNA content, cells pre-treated with VX-680 failed to grow in soft agar or form tumors in mice. Our findings indicate that an intermittent treatment strategy might minimize the on-target side effects of Aurora Kinase B (AURKB) inhibitory therapies. The strategy allows a significant fraction of dividing normal cells to resume proliferation.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Aurora Quinasa B/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Serina-Treonina Quinasas , Agar , Apoptosis , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias/tratamiento farmacológico , ADN/farmacología , Línea Celular Tumoral
12.
Diagn Pathol ; 17(1): 71, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153594

RESUMEN

BACKGROUND: Hyperparathyroidism-Jaw Tumor (HPT-JT) is caused by inactivating germline mutations of CDC73. This hereditary disease can present with a range of symptoms. Jaw ossifying fibroma (OF) is one of the most important clinical presentations, affecting 30% of HPT-JT patients. However, OF is easily confused with other fibro-osseous lesions (FOLs) of the jaw. The correct diagnosis of HPT-JT is a real challenge and must be confirmed by genetic testing. CASE PRESENTATION: A female proband and her father suffered from multiple and recurrent FOLs in the jaw. Considering well demarcated margin and heterogeneous calcified substance lying in a variable density of fibrous stroma, we reached the diagnosis of jaw OF through radiologic and microscopic analyses. Additionally, the proband presented with chronic anemia resulting from menorrhagia, as well as renal mixed epithelial and stromal tumor (MEST). Two patients both presented with no evidence of Hyperparathyroidism (HPT). A germline start codon mutation (c.1A > G) of CDC73 was identified in them. Copy number loss at the CDC73 gene locus was verified in the jaw tumor sample of the proband. CONCLUSION: Regardless of whether HPT manifestations are present, patients with heritable jaw OF may be at risk for HPT-JT. Genetic testing should be adopted to confirm the diagnosis. Early recognition of HPT-JT helps to better develop tailored treatment plans and surveillance programs.


Asunto(s)
Fibroma Osificante , Hiperparatiroidismo , Neoplasias Maxilomandibulares , Neoplasias Renales , Adenoma , Codón Iniciador , Femenino , Fibroma , Humanos , Hiperparatiroidismo/diagnóstico , Hiperparatiroidismo/genética , Hiperparatiroidismo/patología , Neoplasias Maxilomandibulares/diagnóstico , Neoplasias Maxilomandibulares/genética , Neoplasias Maxilomandibulares/patología , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
13.
Nat Commun ; 13(1): 5308, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130946

RESUMEN

The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Enfermedad de Alzheimer/metabolismo , Animales , Prosencéfalo Basal/metabolismo , Neuronas Colinérgicas/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Método Doble Ciego , GTP Fosfohidrolasas/metabolismo , Humanos , Ratones , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
14.
ACS Med Chem Lett ; 13(7): 1091-1098, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859866

RESUMEN

We used mechanism-informed phenotypic screening to identify and optimize compounds that phenocopy the genetic depletion of the mitotic aurora kinase B (AURKB) kinase. After assaying nine aryl fused seven-membered lactam compounds, we identified a hit compound 6a that was subsequently optimized to five lead compounds with low nanomolar activity, represented by the lead compound 6v (19 nM). With excellent drug-like properties, these compounds reproduced the loss of function in phenotypes of AURKB and exhibited potent cytotoxic activities in various cancer cell lines. Collectively, these data support that seven-membered lactam-based analogs might be valuable for further development as a new type of antimitotic agents for the treatment of cancer.

15.
Nat Neurosci ; 25(6): 688-701, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654956

RESUMEN

Autophagy is markedly impaired in Alzheimer's disease (AD). Here we reveal unique autophagy dysregulation within neurons in five AD mouse models in vivo and identify its basis using a neuron-specific transgenic mRFP-eGFP-LC3 probe of autophagy and pH, multiplex confocal imaging and correlative light electron microscopy. Autolysosome acidification declines in neurons well before extracellular amyloid deposition, associated with markedly lowered vATPase activity and build-up of Aß/APP-ßCTF selectively within enlarged de-acidified autolysosomes. In more compromised yet still intact neurons, profuse Aß-positive autophagic vacuoles (AVs) pack into large membrane blebs forming flower-like perikaryal rosettes. This unique pattern, termed PANTHOS (poisonous anthos (flower)), is also present in AD brains. Additional AVs coalesce into peri-nuclear networks of membrane tubules where fibrillar ß-amyloid accumulates intraluminally. Lysosomal membrane permeabilization, cathepsin release and lysosomal cell death ensue, accompanied by microglial invasion. Quantitative analyses confirm that individual neurons exhibiting PANTHOS are the principal source of senile plaques in amyloid precursor protein AD models.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Autofagia , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Placa Amiloide/metabolismo
16.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563142

RESUMEN

Nowadays, the structural complexity of dyes used in the textile industry and the widely adopted water-saving strategy in the dyeing processes often fail plants' biological wastewater treatment units due to chemical oxygen demand (COD) overload. To alleviate this problems, this study investigated a regenerable adsorption-oxidation process to treat dyeing wastewater with COD around 10,000 mg/dm3 using a highly nano-pored activated carbon (AC) as a COD adsorbent, followed by its regeneration using hydrogen peroxide as an oxidizing reagent. In addition to studying AC's COD adsorption and oxidation performance, its operational treatment conditions in terms of temperature and pH were assessed. The results firstly demonstrated that about 50-60% of the COD was consistently adsorbed during the repeated adsorption operation before reaching AC's maximum adsorption capacity (qmax) of 0.165 g-COD/g-AC. The optimal pH and temperature during adsorption were 4.7 and 25 °C, respectively. Secondly, AC regeneration was accomplished by using an initial peroxide concentration of 2.5% (by wt %) and EDTA-Fe of 2.12 mmole/dm3. The reuse of the regenerated ACs was doable. Surprisingly, after the first AC regeneration, the COD adsorption capacity of the regenerated AC even increased by ~7% with respect to the virgin AC. Thirdly, the results of a five-consecutive adsorption-regeneration operation showed that a total of 0.3625 g COD was removed by the 5 g AC used, which was equivalent to an adsorption capacity (q) of 0.0725 (= 0.3625/5) g-COD/g-AC during each adsorption stage. Based on the obtained results, a regenerable COD adsorption-oxidation process using a nano-pored AC to treat the high-textile-COD wastewater looks promising. Thus, a conceptual treatment unit was proposed, and its potential benefits and limitations were addressed.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Análisis de la Demanda Biológica de Oxígeno , Carbón Orgánico/química , Colorantes , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos
17.
Biomed Pharmacother ; 147: 112645, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35051862

RESUMEN

Plants are a rich source for bioactive compounds. However, plant extracts can harbor a mixture of bioactive molecules that promote divergent phenotypes and potentially have confounding effects in bioassays. Even with further purification and identification, target deconvolution can be challenging. Corynoline and acetylcorynoline, are phytochemicals that were previously isolated through a screen for compounds able to induce mitotic arrest and polyploidy in oncogene expressing retinal pigment epithelial (RPE) cells. Here, we shed light on the mechanism by which these phytochemicals can attack human cancer cells. Mitotic arrest was coincident to the induction of centrosome amplification and declustering, causing multi-polar spindle formation. Corynoline was demonstrated to have true centrosome declustering activity in a model where A549 cells were chemically induced to have more than a regular complement of centrosomes. Corynoline could inhibit the centrosome clustering required for pseudo-bipolar spindle formation in these cells. The activity of AURKB, but not AURKA or polo-like kinase 4, was diminished by corynoline. It only partially inhibited AURKB, so it may be a partial antagonist or corynoline may work upstream on an unknown regulator of AURKB activity or localization. Nonetheless, corynoline and acetylcorynoline inhibited the viability of a variety of human cancer derived cell lines. These phytochemicals could serve as prototypes for a next-generation analog with improved potency, selectivity or in vivo bioavailability. Such an analog could be useful as a non-toxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Asunto(s)
Aurora Quinasa B/efectos de los fármacos , Alcaloides de Berberina/farmacología , Mitosis/efectos de los fármacos , Fitoquímicos/farmacología , Poliploidía , Células A549 , Apoptosis/efectos de los fármacos , Aurora Quinasa A/efectos de los fármacos , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Humanos
18.
J Nat Prod ; 84(8): 2312-2320, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34406008

RESUMEN

To identify novel bioactive compounds, an image-based, cell culture screening of natural product extracts was conducted. Specifically, our screen was designed to identify phytochemicals that might phenocopy inhibition of the chromosomal passenger protein complex in eliciting mitotic and cytokinetic defects. A known alkaloid, scoulerine, was identified from the rhizomes of the plant Corydalis decumbens as being able to elicit a transient mitotic arrest followed by either apoptosis induction or polyploidy. In examining the mitotic abnormality further, we observed that scoulerine could elicit supernumerary centrosomes during mitosis, but not earlier in the cell cycle. The localization of NUMA1 at spindle poles was also inhibited, suggesting diminished potential for microtubule recruitment and spindle-pole focusing. Polyploid cells emerged subsequent to cytokinetic failure. The concentration required for scoulerine to elicit all its cell division phenotypes was similar, and an examination of related compounds highlighted the requirement for proper positioning of a hydroxyl and a methoxy group about an aromatic ring for activity. Mechanistically, scoulerine inhibited AURKB activity at concentrations that elicited supernumerary centrosomes and polyploidy. AURKA was only inhibited at higher concentrations, so AURKB inhibition is the likely mechanism by which scoulerine elicited division defects. AURKB inhibition was never complete, so scoulerine may be a suboptimal AURK inhibitor or work upstream of the chromosomal passenger protein complex to reduce AURKB activity. Scoulerine inhibited the viability of a variety of human cancer cell lines. Collectively, these findings uncover a previously unknown activity of scoulerine that could facilitate targeting human cancers. Scoulerine, or a next-generation analogue, may be useful as a nontoxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa B/antagonistas & inhibidores , Alcaloides de Berberina/farmacología , Citocinesis/efectos de los fármacos , Mitosis/efectos de los fármacos , Alcaloides de Berberina/aislamiento & purificación , Línea Celular , China , Corydalis/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Rizoma/química
19.
Cell Rep ; 35(4): 109034, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910020

RESUMEN

Lysosomal trafficking and maturation in neurons remain poorly understood and are unstudied in vivo despite high disease relevance. We generated neuron-specific transgenic mice to track vesicular CTSD acquisition, acidification, and traffic within the autophagic-lysosomal pathway in vivo, revealing that mature lysosomes are restricted from axons. Moreover, TGN-derived transport carriers (TCs), not lysosomes, supply lysosomal components to axonal organelles. Ultrastructurally distinctive TCs containing TGN and lysosomal markers enter axons, engaging autophagic vacuoles and late endosomes. This process is markedly upregulated in dystrophic axons of Alzheimer models. In cultured neurons, most axonal LAMP1 vesicles are weakly acidic TCs that shuttle lysosomal components bidirectionally, conferring limited degradative capability to retrograde organelles before they mature fully to lysosomes within perikarya. The minor LAMP1 subpopulation attaining robust acidification are retrograde Rab7+ endosomes/amphisomes, not lysosomes. Restricted lysosome entry into axons explains the unique lysosome distribution in neurons and their vulnerability toward neuritic dystrophy in disease.


Asunto(s)
Axones/metabolismo , Aparato de Golgi/metabolismo , Orgánulos/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos
20.
PLoS One ; 16(3): e0248355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760847

RESUMEN

A synthetic lethal effect arises when a cancer-associated change introduces a unique vulnerability to cancer cells that makes them unusually susceptible to a drug's inhibitory activity. The synthetic lethal approach is attractive because it enables targeting of cancers harboring specific genomic or epigenomic alterations, the products of which may have proven refractory to direct targeting. An example is cancer driven by overexpression of MYC. Here, we conducted a high-content screen for compounds that are synthetic lethal to elevated MYC using a small-molecule library to identify compounds that are closely related to, or are themselves, regulatory-approved drugs. The screen identified dimethylfasudil, a potent and reversible inhibitor of Rho-associated kinases, ROCK1 and ROCK2. Close analogs of dimethylfasudil are used clinically to treat neurologic and cardiovascular disorders. The synthetic lethal interaction was conserved in rodent and human cell lines and could be observed with activation of either MYC or its paralog MYCN. The synthetic lethality seems specific to MYC overexpressing cells as it could not be substituted by a variety of oncogenic manipulations and synthetic lethality was diminished by RNAi-mediated depletion of MYC in human cancer cell lines. Collectively, these data support investigation of the use of dimethylfasudil as a drug that is synthetic lethal for malignancies that specifically overexpress MYC.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/genética , Mutaciones Letales Sintéticas/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...