Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Yi Chuan ; 41(7): 599-610, 2019 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-31307969

RESUMEN

Variety pedigree contains a lot of information, including parental origin, breeding methods, genetic relationship, and so on. Studying them could reveal the evolution characteristics and rules of breeding and ultimately guide practice. The pedigrees of 326 wheat varieties from 1936 to 2017 in the history of the Sichuan Province was collected and analyzed in terms of breeding methods, parental composition, changes of high frequency parents and backbone parents, genetic contribution, distribution of translocation lines and synthetic germplasms. Over the past 80 years since 1930s, breeders have selected 387 direct parents from a large number of materials, made 256 combinations by means of cross breeding, and have released 314 varieties from them, which contributed directly to wheat breeding and production in Sichuan. Wheat breeding experienced a process from utilizing landraces, introducing foreign germplasm to creating breeding materials independently; high-frequency parents and backbone parents used for breeding gradually changed in different stage of the breeding history. Synthetic germplasms contributed greatly to wheat breeding in recent years. The consistency of breeding objectives will inevitably lead to the loss of genetic diversity and the fragility of genetic basis. In the future, the protection and utilization of genetic resources should be strengthened. In this review, the development of wheat breeding in Sichuan was summarized through pedigree analysis, in order to provide a reference for future research.


Asunto(s)
Fitomejoramiento , Triticum/genética , China , Linaje
2.
Cytogenet Genome Res ; 143(4): 280-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247402

RESUMEN

The introduction of genetic variation from wild and cultivated Triticeae species has been a long-standing approach for wheat improvement. Dasypyrum breviaristatum species harbor novel and agronomically important genes for resistance against multi-fungal diseases. The development of new wheat-D. breviaristatum introgression lines offers chances for the identification of stripe rust resistance gene(s). A wheat line, D11-5, was selected from a cross between wheat line MY11 and wheat-D. breviaristatum partial amphiploid TDH-2. It was characterized by FISH and PCR-based molecular markers. Chromosome counting revealed that the D11-5 line shows a hexaploid set of 2n = 6x = 42 chromosomes. FISH analysis using the Dasypyrum repetitive sequence pDb12H as a probe demonstrated that D11-5 contained a pair of D. breviaristatum chromosomes, while FISH with wheat D-genomic repetitive sequences revealed that the chromosome 2D was absent in D11-5. The functional molecular markers confirmed that the introduced D. breviaristatum chromosomes belong to the homoeologous group 2, indicating that D11-5 was a 2V(b) (2D) disomic substitution line. Field resistance showed that the introduced D. breviaristatum chromosomes 2V(b) were responsible for the stripe rust resistance at the adult plant stage. FISH, C-banding, and PCR-based molecular marker analysis indicated that the chromosome 2V(b) of D. breviaristatum was completely different from the chromosome 2V of D. villosum. The identified wheat-D. breviaristatum chromosome substitution line D11-5 may be applied to produce agronomically desirable stripe rust resistance germplasm.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Ascomicetos/fisiología , Secuencia de Bases , Basidiomycota/fisiología , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Hibridación Genética , Hibridación Fluorescente in Situ , Enfermedades de las Plantas/inmunología , Ploidias , Triticum/inmunología
3.
J Genet ; 93(3): 725-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25572231

RESUMEN

Although the unique properties of wheat α-gliadin gene family are well characterized, little is known about the evolution and genomic divergence of α-gliadin gene family within the Triticeae. We isolated a total of 203 α-gliadin gene sequences from 11 representative diploid and polyploid Triticeae species, and found 108 sequences putatively functional. Our results indicate that α-gliadin genes may have possibly originated from wild Secale species, where the sequences contain the shortest repetitive domains and display minimum variation. A miniature inverted-repeat transposable element insertion is reported for the first time in α-gliadin gene sequence of Thinopyrum intermedium in this study, indicating that the transposable element might have contributed to the diversification of α-gliadin genes family among Triticeae genomes. The phylogenetic analyses revealed that the α-gliadin gene sequences of Dasypyrum, Australopyrum, Lophopyrum, Eremopyrum and Pseudoroengeria species have amplified several times. A search for four typical toxic epitopes for celiac disease within the Triticeae α-gliadin gene sequences showed that the α-gliadins of wild Secale, Australopyrum and Agropyron genomes lack all four epitopes, while other Triticeae species have accumulated these epitopes, suggesting that the evolution of these toxic epitopes sequences occurred during the course of speciation, domestication or polyploidization of Triticeae.


Asunto(s)
Evolución Molecular , Gliadina/genética , Filogenia , Triticum/genética , Secuencia de Aminoácidos/genética , Secuencia de Bases , Variación Genética , Genoma de Planta , Poliploidía , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...