Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Small ; 20(23): e2308847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174599

RESUMEN

The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.

3.
Food Chem X ; 21: 101082, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38162037

RESUMEN

A core-shell hydrogel bead system was designed to maintain the catalytic activity of phytase and protect its enzymatic functionality from heat treatment. The designed structure consists of a chitosan-phytase complex core and an alginate-carrageenan hydrogel shell. The core-shell hydrogel was optimized to improve phytase encapsulation efficiency and increase the thermal stability of the encapsulated phytase. After heat treatment, encapsulated phytase retained âˆ¼ 70 % of its catalytic activity and the same secondary structure of free phytase. Fourier transform infrared spectroscopy indicated strong intermolecular interactions between chitosan and phytase in the core, but little interaction between the core and the alginate and κ-carrageenan shell, this supports the structural and functional stability of the phytase. Differential scanning calorimetry confirmed that the designed core-shell structure had a higher melting point. Encapsulating phytase in a core-shell hydrogel bead can enhance the thermal stability of phytase, which broadens the potential applications for phytase delivery.

4.
Sci Rep ; 13(1): 4728, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959258

RESUMEN

Controlling the sizes of liposomes is critical in drug delivery systems because it directly influences their cellular uptake, transportation, and accumulation behavior. Although hydrodynamic focusing has frequently been employed when synthesizing nano-sized liposomes, little is known regarding how flow characteristics determine liposome formation. Here, various sizes of homogeneous liposomes (50-400 nm) were prepared according to flow rate ratios in two solvents, ethanol, and isopropyl alcohol (IPA). Relatively small liposomes formed in ethanol due to its low viscosity and high diffusivity, whereas larger, more poly-dispersed liposomes formed when using IPA as a solvent. This difference was investigated via numerical simulations using the characteristic time factor to predict the liposome size; this approach was also used to examine the flow characteristics inside the microfluidic channel. In case of the liposomes, the membrane rigidity also has a critical role in determining their size. The increased viscosity and packing density of the membrane by addition of cholesterol confirmed by fluorescence anisotropy and polarity lead to increase in liposome size (40-530 nm). However, the interposition of short-chain lipids de-aligned the bilayer membrane, leading to its degradation; this decreased the liposome size. Adding short-chain lipids linearly decreased the liposome size (130-230 nm), but at a shallower gradient than that of cholesterol. This analytical study expands the understanding of microfluidic environment in the liposome synthesis by offering design parameters and their relation to the size of liposomes.


Asunto(s)
Etanol , Liposomas , Solventes , Colesterol , Lípidos , Tamaño de la Partícula
5.
Enzyme Microb Technol ; 161: 110117, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36049397

RESUMEN

Cordyceps militaris, an entomopathogenic Cordyceps mushroom, is a crucial ethnopharmacological agricultural product with applications in traditional oriental remedies in East Asia. Since lipases are reported to serve as key enzymatic equipment for entomopathogenic fungi during the host infection, the presence of various lipases with different biochemical features in C. militaris was elucidated. Three lipases from C. militaris (CML) of 60-70 kDa were isolated according to protein hydrophobicity; isoform relationships were identified by peptide mapping using liquid chromatography-electrospray ionization-tandem mass spectrometry. The CML isoforms exhibited distinct substrate specificities, which were related to the hydrophobicity of each isoform. Furthermore, the integral stereoselectivity of each lipase towards trioleoylglycerol diverged into two classes (sn-1,3 and sn-2 regioselectivity) that are rare in canonical fungal lipases. Overall, our results demonstrate that C. militaris secretes lipase isoforms with cocktail-like enzyme functions that may contribute to the entomopathogenic life cycle of C. militaris. Each CML isoform has distinct advantages for biocatalyst applications in the food and oleochemical industries.


Asunto(s)
Agaricales , Cordyceps , Lipasa/metabolismo , Isoformas de Proteínas/metabolismo , Especificidad por Sustrato
6.
Langmuir ; 38(30): 9294-9300, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35863074

RESUMEN

Oral administration of therapeutic proteins is very challenging because of gastrointestinal instability and decomposition. In this study, we developed a system for oral delivery of superoxide dismutase (SOD) as one of the therapeutic proteins. SOD-loaded capsosomes (SOD-C) were formed by the assembly of chitosan-coated solid lipid nanoparticles and SOD-loaded liposomes (SOD-L). Unlike raw SOD activity decreases to 19.41% in SGF and 13.70% in SIF, the SOD-C in SGF (89.30%) condition retained its initial catalytic activity and decreased but exhibited a three-fold higher raw SOD activity even after incubation in SIF (41.63%). TEM analysis indicated that after intestinal digestion, the residual amount of intact liposomes affected the higher catalytic activity of SOD-C compared to raw SOD and SOD-L. Based on these results, significantly higher cellular uptake of SOD-C was observed compared to raw SOD. Also, SOD-C remarkably suppressed the cellular malondialdehyde (MDA) concentration by maintaining the antioxidative capacity of SOD to remove MDA produced in the oxidative stress-induced cells, thereby contributing to a significant five-fold difference with SOD-R (p < 0.05). This delivery system can facilitate the oral application of other therapeutic proteins, improving gastrointestinal stability.


Asunto(s)
Liposomas , Nanopartículas , Concentración de Iones de Hidrógeno , Superóxido Dismutasa
7.
Sci Rep ; 11(1): 24354, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934167

RESUMEN

We designed a novel lyophilization method using controlled rate slow freezing (CSF) with lyoprotective agent (LPA) to achieve intact lipid nanovesicles after lyophilization. During the freezing step, LPA prevented water supercooling, and the freezing rate was controlled by CSF. Regulating the freezing rate by various liquid media was a crucial determinant of membrane disruption, and isopropanol (freezing rate of 0.933 °C/min) was the optimal medium for the CSF system. Lyophilized lipid nanovesicle using both CSF and LPA retained 92.9% of the core material and had uniform size distributions (Z-average diameter = 133.4 nm, polydispersity index = 0.144), similar to intact vesicles (120.7 nm and 0.159, respectively), after rehydration. Only lyophilized lipid nanovesicle using both CSF and LPA showed no changes in membrane fluidity and polarity. This lyophilization method can be applied to improve storage stability of lipid nanocarriers encapsulating drugs while retaining their original activity.

8.
Environ Sci Pollut Res Int ; 28(48): 69200-69209, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34291413

RESUMEN

Pine wood nematode, Bursaphelenchus xylophilus, is a plant parasitic nematode which causes severe damage to several Pinus species. Two natural compounds, dipropyl trisulfide (DPTS) and methyl propyl trisulfide (MPTS), showed strong nematicidal activity against the pine wood nematode, presenting 4.24 and 17.81 µg/mL LC50 values, respectively. However, hydrophobicity and low stability have limited their practical use in the field as nematicides. To overcome these problems, chitosan-coated nanoemulsions of DPTS and MPTS were developed. The optimum chitosan concentration for the delivery system of the two sulfides was 0.5%. Optimized chitosan-coated nanoemulsions of sulfides have a uniform size distribution (mean diameter = 203.7 and 207.7 nm, mean polydispersity index = 0.176 and 0.178) with sufficient colloidal stability (mean zeta potential = +40 and +45 mV). The LC50 values of DPTS and MPTS nanoemulsions coated with 0.5% chitosan against the pine wood nematode were 5.01 and 16.60 µg/mL, respectively. In addition, chitosan coating improved the long-term storage stability and persistence of nematicidal activity of the nanoemulsions. This study indicates that the chitosan-coated nanoemulsion is a suitable formulation for sulfides as novel nematicides against the pine wood nematode for field application.


Asunto(s)
Quitosano , Aceites Volátiles , Pinus , Tylenchida , Animales , Cebollas , Enfermedades de las Plantas , Sulfuros/farmacología , Xylophilus
9.
Enzyme Microb Technol ; 128: 40-48, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31186109

RESUMEN

The overuse and misuse of antibiotics in treating bacterial infections cause the rapid emergence of drug-resistant bacteria, suggesting that the development of alternative strategies to control antibiotic-resistant bacteria is urgently needed. Endolysins are bacteriophage-encoded enzymes that can degrade peptidoglycan in bacterial cell walls, and they have great potential as alternative antimicrobial agents. However, exogenous application of recombinant endolysin is limited to Gram-positive bacteria because endolysins cannot penetrate the outer membrane of Gram-negative bacteria. Here, a liposome-mediated endolysin encapsulation system was developed, and its ability to penetrate the outer membrane of Gram-negative bacteria was tested. The phage-derived endolysin BSP16Lys was isolated, characterized, and used for encapsulation into a cationic liposome comprised of dipalmitoylphosphatidylcholine (DPPC), cholesterol, and hexadecylamine. The BSP16Lys-encapsulated liposome had a high zeta potential value (over 30 mV) with an average diameter of 303 nm. The encapsulation efficiency of BSP16Lys into the liposome was 35.27%. Salmonella Typhimuriumand Escherichia coli cells treated with BSP16Lys-encapsulated liposomes showed 2.2-log CFU/mL and 1.6-log CFU/mL reductions in the viable cell numbers, respectively, without treatment of a membrane permeabilizer. These results showed potential for liposome-mediated delivery of endolysin for exogenous application against Gram-negative bacteria.


Asunto(s)
Antibacterianos/metabolismo , Endopeptidasas/metabolismo , Enzimas Inmovilizadas/metabolismo , Escherichia coli/efectos de los fármacos , Liposomas/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Antibacterianos/síntesis química , Pared Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Liposomas/síntesis química , Peptidoglicano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...