Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; PP2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042541

RESUMEN

Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.

2.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37300060

RESUMEN

Joint blind source separation (JBSS) has wide applications in modeling latent structures across multiple related datasets. However, JBSS is computationally prohibitive with high-dimensional data, limiting the number of datasets that can be included in a tractable analysis. Furthermore, JBSS may not be effective if the data's true latent dimensionality is not adequately modeled, where severe overparameterization may lead to poor separation and time performance. In this paper, we propose a scalable JBSS method by modeling and separating the "shared" subspace from the data. The shared subspace is defined as the subset of latent sources that exists across all datasets, represented by groups of sources that collectively form a low-rank structure. Our method first provides the efficient initialization of the independent vector analysis (IVA) with a multivariate Gaussian source prior (IVA-G) specifically designed to estimate the shared sources. Estimated sources are then evaluated regarding whether they are shared, upon which further JBSS is applied separately to the shared and non-shared sources. This provides an effective means to reduce the dimensionality of the problem, improving analyses with larger numbers of datasets. We apply our method to resting-state fMRI datasets, demonstrating that our method can achieve an excellent estimation performance with significantly reduced computational costs.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Distribución Normal
3.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991975

RESUMEN

The identification of homogeneous subgroups of patients with psychiatric disorders can play an important role in achieving personalized medicine and is essential to provide insights for understanding neuropsychological mechanisms of various mental disorders. The functional connectivity profiles obtained from functional magnetic resonance imaging (fMRI) data have been shown to be unique to each individual, similar to fingerprints; however, their use in characterizing psychiatric disorders in a clinically useful way is still being studied. In this work, we propose a framework that makes use of functional activity maps for subgroup identification using the Gershgorin disc theorem. The proposed pipeline is designed to analyze a large-scale multi-subject fMRI dataset with a fully data-driven method, a new constrained independent component analysis algorithm based on entropy bound minimization (c-EBM), followed by an eigenspectrum analysis approach. A set of resting-state network (RSN) templates is generated from an independent dataset and used as constraints for c-EBM. The constraints present a foundation for subgroup identification by establishing a connection across the subjects and aligning subject-wise separate ICA analyses. The proposed pipeline was applied to a dataset comprising 464 psychiatric patients and discovered meaningful subgroups. Subjects within the identified subgroups share similar activation patterns in certain brain areas. The identified subgroups show significant group differences in multiple meaningful brain areas including dorsolateral prefrontal cortex and anterior cingulate cortex. Three sets of cognitive test scores were used to verify the identified subgroups, and most of them showed significant differences across subgroups, which provides further confirmation of the identified subgroups. In summary, this work represents an important step forward in using neuroimaging data to characterize mental disorders.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Mentales , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Trastornos Mentales/diagnóstico por imagen , Neuroimagen
4.
Appl Sci (Basel) ; 12(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37465648

RESUMEN

Recent years have seen increased research interest in replacing the computationally intensive Magnetic resonance (MR) image reconstruction process with deep neural networks. We claim in this paper that the traditional image reconstruction methods and deep learning (DL) are mutually complementary and can be combined to achieve better image reconstruction quality. To test this hypothesis, a hybrid DL image reconstruction method was proposed by combining a state-of-the-art deep learning network, namely a generative adversarial network with cycle loss (CycleGAN), with a traditional data reconstruction algorithm: Projection Onto Convex Set (POCS). The output of the first iteration's training results of the CycleGAN was updated by POCS and used as the extra training data for the second training iteration of the CycleGAN. The method was validated using sub-sampled Magnetic resonance imaging data. Compared with other state-of-the-art, DL-based methods (e.g., U-Net, GAN, and RefineGAN) and a traditional method (compressed sensing), our method showed the best reconstruction results.

5.
Magn Reson Med ; 84(4): 1724-1733, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32301185

RESUMEN

PURPOSE: Glutamate weighted Chemical Exchange Saturation Transfer (GluCEST) MRI is a noninvasive technique for mapping parenchymal glutamate in the brain. Because of the sensitivity to field (B0 ) inhomogeneity, the total acquisition time is prolonged due to the repeated image acquisitions at several saturation offset frequencies, which can cause practical issues such as increased sensitivity to patient motions. Because GluCEST signal is derived from the small z-spectrum difference, it often has a low signal-to-noise-ratio (SNR). We proposed a novel deep learning (DL)-based algorithm armed with wide activation neural network blocks to address both issues. METHODS: B0 correction based on reduced saturation offset acquisitions was performed for the positive and negative sides of the z-spectrum separately. For each side, a separate deep residual network was trained to learn the nonlinear mapping from few CEST-weighted images acquired at different ppm values to the one at 3 ppm (where GluCEST peaks) in the same side of the z-spectrum. RESULTS: All DL-based methods outperformed the "traditional" method visually and quantitatively. The wide activation blocks-based method showed the highest performance in terms of Structural Similarity Index (SSIM) and peak signal-to-noise ratio (PSNR), which were 0.84 and 25dB respectively. SNR increases in regions of interest were over 8dB. CONCLUSION: We demonstrated that the new DL-based method can reduce the entire GluCEST imaging time by ˜50% and yield higher SNR than current state-of-the-art.


Asunto(s)
Aprendizaje Profundo , Ácido Glutámico , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética
6.
Magn Reson Imaging ; 68: 95-105, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31954173

RESUMEN

PURPOSE: Arterial spin labeling (ASL) perfusion MRI is a noninvasive technique for measuring cerebral blood flow (CBF) in a quantitative manner. A technical challenge in ASL MRI is data processing because of the inherently low signal-to-noise-ratio (SNR). Deep learning (DL) is an emerging machine learning technique that can learn a nonlinear transform from acquired data without using any explicit hypothesis. Such a high flexibility may be particularly beneficial for ASL denoising. In this paper, we proposed and validated a DL-based ASL MRI denoising algorithm (DL-ASL). METHODS: The DL-ASL network was constructed using convolutional neural networks (CNNs) with dilated convolution and wide activation residual blocks to explicitly take the inter-voxel correlations into account, and preserve spatial resolution of input image during model learning. RESULTS: DL-ASL substantially improved the quality of ASL CBF in terms of SNR. Based on retrospective analyses, DL-ASL showed a high potential of reducing 75% of the original acquisition time without sacrificing CBF measurement quality. CONCLUSION: DL-ASL achieved improved denoising performance for ASL MRI as compared with current routine methods in terms of higher PSNR, SSIM and Radiologic scores. With the help of DL-ASL, much fewer repetitions may be prescribed in ASL MRI, resulting in a great reduction of the total acquisition time.


Asunto(s)
Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Aprendizaje Automático , Angiografía por Resonancia Magnética , Adulto , Algoritmos , Encéfalo/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Relación Señal-Ruido , Marcadores de Spin , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA