Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
PLoS Genet ; 20(5): e1011236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722825

RESUMEN

Patients with ER-negative breast cancer have the worst prognosis of all breast cancer subtypes, often experiencing rapid recurrence or progression to metastatic disease shortly after diagnosis. Given that metastasis is the primary cause of mortality in most solid tumors, understanding metastatic biology is crucial for effective intervention. Using a mouse systems genetics approach, we previously identified 12 genes associated with metastatic susceptibility. Here, we extend those studies to identify Resf1, a poorly characterized gene, as a novel metastasis susceptibility gene in ER- breast cancer. Resf1 is a large, unstructured protein with an evolutionarily conserved intron-exon structure, but with poor amino acid conservation. CRISPR or gene trap mouse models crossed to the Polyoma Middle-T antigen genetically engineered mouse model (MMTV-PyMT) demonstrated that reduction of Resf1 resulted in a significant increase in tumor growth, a shortened overall survival time, and increased incidence and number of lung metastases, consistent with patient data. Furthermore, an analysis of matched tail and primary tissues revealed loss of the wildtype copy in tumor tissue, consistent with Resf1 being a tumor suppressor. Mechanistic analysis revealed a potential role of Resf1 in transcriptional control through association with compound G4 quadruplexes in expressed sequences, particularly those associated with ribosomal biogenesis. These results suggest that loss of Resf1 enhances tumor progression in ER- breast cancer through multiple alterations in both transcriptional and translational control.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Ratones , Femenino , Humanos , G-Cuádruplex , Genes Supresores de Tumor , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia
2.
Sci Signal ; 17(836): eadd5073, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743809

RESUMEN

The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.


Asunto(s)
Sistema de Señalización de MAP Quinasas , FN-kappa B , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , FN-kappa B/metabolismo , FN-kappa B/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Línea Celular Tumoral , Mutación , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Melanoma/genética , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones Desnudos
3.
medRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562791

RESUMEN

Electronic health records, biobanks, and wearable biosensors contain multiple high-dimensional clinical data (HDCD) modalities (e.g., ECG, Photoplethysmography (PPG), and MRI) for each individual. Access to multimodal HDCD provides a unique opportunity for genetic studies of complex traits because different modalities relevant to a single physiological system (e.g., circulatory system) encode complementary and overlapping information. We propose a novel multimodal deep learning method, M-REGLE, for discovering genetic associations from a joint representation of multiple complementary HDCD modalities. We showcase the effectiveness of this model by applying it to several cardiovascular modalities. M-REGLE jointly learns a lower representation (i.e., latent factors) of multimodal HDCD using a convolutional variational autoencoder, performs genome wide association studies (GWAS) on each latent factor, then combines the results to study the genetics of the underlying system. To validate the advantages of M-REGLE and multimodal learning, we apply it to common cardiovascular modalities (PPG and ECG), and compare its results to unimodal learning methods in which representations are learned from each data modality separately, but the downstream genetic analyses are performed on the combined unimodal representations. M-REGLE identifies 19.3% more loci on the 12-lead ECG dataset, 13.0% more loci on the ECG lead I + PPG dataset, and its genetic risk score significantly outperforms the unimodal risk score at predicting cardiac phenotypes, such as atrial fibrillation (Afib), in multiple biobanks.

4.
Cell Biosci ; 13(1): 136, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491298

RESUMEN

BACKGROUND: The absence of prominent, actionable genetic alternations in osteosarcomas (OS) implies that transcriptional and epigenetic mechanisms significantly contribute to the progression of this life-threatening form of cancer. Therefore, the identification of potential transcriptional events that promote the survival of OS cells could be key in devising targeted therapeutic approaches for OS. We have previously shown that RUNX2 is a transcription factor (TF) essential for OS cell survival. Unfortunately, the transcriptional network or circuitry regulated by RUNX2 in OS cells is still largely unknown. METHODS: The TFs that are in the RUNX2 transcriptional circuitry were identified by analyzing RNAseq and ChIPseq datasets of RUNX2. To evaluate the effect of SOX9 knockdown on the survival of osteosarcoma cells in vitro, we employed cleaved caspase-3 immunoblotting and propidium iodide staining techniques. The impact of SOX9 and JMJD1C depletion on OS tumor growth was examined in vivo using xenografts and immunohistochemistry. Downstream targets of SOX9 were identified and dissected using RNAseq, pathway analysis, and gene set enrichment analysis. Furthermore, the interactome of SOX9 was identified using BioID and validated by PLA. RESULT: Our findings demonstrate that SOX9 is a critical TF that is induced by RUNX2. Both in vitro and in vivo experiments revealed that SOX9 plays a pivotal role in the survival of OS. RNAseq analysis revealed that SOX9 activates the transcription of MYC, a downstream target of RUNX2. Mechanistically, our results suggest a transcriptional network involving SOX9, RUNX2, and MYC, with SOX9 binding to RUNX2. Moreover, we discovered that JMJD1C, a chromatin factor, is a novel binding partner of SOX9, and depletion of JMJD1C impairs OS tumor growth. CONCLUSION: The findings of this study represent a significant advancement in our understanding of the transcriptional network present in OS cells, providing valuable insights that may contribute to the development of targeted therapies for OS.

5.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333132

RESUMEN

Intratumoral heterogeneity (ITH) can promote cancer progression and treatment failure, but the complexity of the regulatory programs and contextual factors involved complicates its study. To understand the specific contribution of ITH to immune checkpoint blockade (ICB) response, we generated single cell-derived clonal sublines from an ICB-sensitive and genetically and phenotypically heterogeneous mouse melanoma model, M4. Genomic and single cell transcriptomic analyses uncovered the diversity of the sublines and evidenced their plasticity. Moreover, a wide range of tumor growth kinetics were observed in vivo , in part associated with mutational profiles and dependent on T cell-response. Further inquiry into melanoma differentiation states and tumor microenvironment (TME) subtypes of untreated tumors from the clonal sublines demonstrated correlations between highly inflamed and differentiated phenotypes with the response to anti-CTLA-4 treatment. Our results demonstrate that M4 sublines generate intratumoral heterogeneity at both levels of intrinsic differentiation status and extrinsic TME profiles, thereby impacting tumor evolution during therapeutic treatment. These clonal sublines proved to be a valuable resource to study the complex determinants of response to ICB, and specifically the role of melanoma plasticity in immune evasion mechanisms.

6.
Rheumatol Int ; 43(9): 1629-1636, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37368037

RESUMEN

Antibodies to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) have been reported in pooled healthy donor plasma and intravenous immunoglobulin products (IVIG). It is not known whether administration of IVIG increases circulating anti-SARS-CoV-2 antibodies (COVID ab) in IVIG recipients. COVID ab against the receptor binding domain of the spike protein were analyzed using a chemiluminescent microparticle immunoassay in patients with idiopathic inflammatory myopathies (IIM) both receiving and not receiving IVIG (IVIG and non-IVIG group, respectively). No significant differences in COVID ab levels were noted between IVIG and non-IVIG groups (417 [67-1342] AU/mL in IVIG vs 5086 [43-40,442] AU/mL in non-IVIG, p = 0.11). In linear regression models including all post-vaccination patient samples, higher number of vaccine doses was strongly associated with higher COVID ab levels (2.85 [1.21, 4.48] log AU/mL, regression coefficient [Formula: see text] [95% CI], p = 0.001), while use of RTX was associated with lower ab levels (2.73 [- 4.53, - 0.93] log AU/mL, [Formula: see text][95%CI], p = 0.004). In the IVIG group, higher total monthly doses of IVIG were associated with slightly higher COVID ab levels (0.02 [0.002-0.05] log AU/mL, p = 0.04). While patients on IVIG did not have higher COVID ab levels compared to the non-IVIG group, higher monthly doses of IVIG were associated with higher circulating levels of COVID ab in patients receiving IVIG, particularly in patients concomitantly receiving RTX. Our findings suggest that IIM patients, especially those at increased risk of COVID infection and worse COVID outcomes due to RTX therapy may have protective benefits when on concurrent IVIG treatment.


Asunto(s)
COVID-19 , Miositis , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , SARS-CoV-2 , Anticuerpos Antivirales , Miositis/tratamiento farmacológico , Vacunación
7.
medRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37163049

RESUMEN

High-dimensional clinical data are becoming more accessible in biobank-scale datasets. However, effectively utilizing high-dimensional clinical data for genetic discovery remains challenging. Here we introduce a general deep learning-based framework, REpresentation learning for Genetic discovery on Low-dimensional Embeddings (REGLE), for discovering associations between genetic variants and high-dimensional clinical data. REGLE uses convolutional variational autoencoders to compute a non-linear, low-dimensional, disentangled embedding of the data with highly heritable individual components. REGLE can incorporate expert-defined or clinical features and provides a framework to create accurate disease-specific polygenic risk scores (PRS) in datasets which have minimal expert phenotyping. We apply REGLE to both respiratory and circulatory systems: spirograms which measure lung function and photoplethysmograms (PPG) which measure blood volume changes. Genome-wide association studies on REGLE embeddings identify more genome-wide significant loci than existing methods and replicate known loci for both spirograms and PPG, demonstrating the generality of the framework. Furthermore, these embeddings are associated with overall survival. Finally, we construct a set of PRSs that improve predictive performance of asthma, chronic obstructive pulmonary disease, hypertension, and systolic blood pressure in multiple biobanks. Thus, REGLE embeddings can quantify clinically relevant features that are not currently captured in a standardized or automated way.

8.
Nat Cancer ; 4(3): 419-435, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36973439

RESUMEN

Most tumor cells undergo apoptosis in circulation and at the metastatic organ sites due to host immune surveillance and a hostile microenvironment. It remains to be elucidated whether dying tumor cells have a direct effect on live tumor cells during the metastatic process and what the underlying mechanisms are. Here we report that apoptotic cancer cells enhance the metastatic outgrowth of surviving cells through Padi4-mediated nuclear expulsion. Tumor cell nuclear expulsion results in an extracellular DNA-protein complex that is enriched with receptor for advanced glycation endproducts (RAGE) ligands. The chromatin-bound RAGE ligand S100a4 activates RAGE receptors in neighboring surviving tumor cells, leading to Erk activation. In addition, we identified nuclear expulsion products in human patients with breast, bladder and lung cancer and a nuclear expulsion signature correlated with poor prognosis. Collectively, our study demonstrates how apoptotic cell death can enhance the metastatic outgrowth of neighboring live tumor cells.


Asunto(s)
Neoplasias Pulmonares , Proteína de Unión al Calcio S100A4 , Humanos , Apoptosis , Neoplasias Pulmonares/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo , Microambiente Tumoral
9.
Cancer Res ; 83(8): 1280-1298, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36799863

RESUMEN

Understanding functional interactions between cancer mutations is an attractive strategy for discovering unappreciated cancer pathways and developing new combination therapies to improve personalized treatment. However, distinguishing driver gene pairs from passenger pairs remains challenging. Here, we designed an integrated omics approach to identify driver gene pairs by leveraging genetic interaction analyses of top mutated breast cancer genes and the proteomics interactome data of their encoded proteins. This approach identified that PIK3CA oncogenic gain-of-function (GOF) and CBFB loss-of-function (LOF) mutations cooperate to promote breast tumor progression in both mice and humans. The transcription factor CBFB localized to mitochondria and moonlighted in translating the mitochondrial genome. Mechanistically, CBFB enhanced the binding of mitochondrial mRNAs to TUFM, a mitochondrial translation elongation factor. Independent of mutant PI3K, mitochondrial translation defects caused by CBFB LOF led to multiple metabolic reprogramming events, including defective oxidative phosphorylation, the Warburg effect, and autophagy/mitophagy addiction. Furthermore, autophagy and PI3K inhibitors synergistically killed breast cancer cells and impaired the growth of breast tumors, including patient-derived xenografts carrying CBFB LOF and PIK3CA GOF mutations. Thus, our study offers mechanistic insights into the functional interaction between mutant PI3K and mitochondrial translation dysregulation in breast cancer progression and provides a strong preclinical rationale for combining autophagy and PI3K inhibitors in precision medicine for breast cancer. SIGNIFICANCE: CBFB-regulated mitochondrial translation is a regulatory step in breast cancer metabolism and synergizes with mutant PI3K in breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Subunidad beta del Factor de Unión al Sitio Principal , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/farmacología , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/genética
10.
Nat Biotechnol ; 41(2): 232-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36050551

RESUMEN

Circular consensus sequencing with Pacific Biosciences (PacBio) technology generates long (10-25 kilobases), accurate 'HiFi' reads by combining serial observations of a DNA molecule into a consensus sequence. The standard approach to consensus generation, pbccs, uses a hidden Markov model. We introduce DeepConsensus, which uses an alignment-based loss to train a gap-aware transformer-encoder for sequence correction. Compared to pbccs, DeepConsensus reduces read errors by 42%. This increases the yield of PacBio HiFi reads at Q20 by 9%, at Q30 by 27% and at Q40 by 90%. With two SMRT Cells of HG003, reads from DeepConsensus improve hifiasm assembly contiguity (NG50 4.9 megabases (Mb) to 17.2 Mb), increase gene completeness (94% to 97%), reduce the false gene duplication rate (1.1% to 0.5%), improve assembly base accuracy (Q43 to Q45) and reduce variant-calling errors by 24%. DeepConsensus models could be trained to the general problem of analyzing the alignment of other types of sequences, such as unique molecular identifiers or genome assemblies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
11.
Cancers (Basel) ; 14(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36291785

RESUMEN

BACKGROUND: Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene that codes for multiple domains, including complement regulatory and adhesion proteins, and has recently been shown to have alterations in multiple cancers. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis on somatic copy number alterations (CNAs), including copy-number gain or loss, allelic imbalance (AI), loss of heterozygosity (LOH), and the expressions of mRNA and its target miRNAs on specimens from the same patients with ESCC. RESULTS: (i) Two-thirds of ESCC patients had all three types of alterations studied-somatic DNA alterations in 70%, and abnormal expressions of CSMD1 RNA in 69% and in target miRNAs in 66%; patterns among these alterations were complex. (ii) In total, 97% of 888 CSMD1 SNPs studied showed somatic DNA alterations, with most located near exons 4-11, 24-25, 39-40, 55-56, and 69-70. (iii) In total, 68% of SNPs with a CNA were correlated with expression of CSMD1. (iv) A total of 33 correlations between non-coding SNPs and expression of CSMD1 target miRs were found. CONCLUSIONS: Our results indicate that the CSMD1 gene may play a role in ESCC through complex patterns of DNA alterations and RNA and miRNA expressions. Alterations in some somatic SNPs in non-coding regions of CSMD1 appear to influence expression of this gene and its target miRNAs.

12.
Clin Exp Metastasis ; 39(5): 815-831, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35939247

RESUMEN

Tumor-derived exosomes have documented roles in accelerating the initiation and outgrowth of metastases, as well as in therapy resistance. Little information supports the converse, that exosomes or similar vesicles can suppress metastasis. We investigated the NME1 (Nm23-H1) metastasis suppressor as a candidate for metastasis suppression by extracellular vesicles. Exosomes derived from two cancer cell lines (MDA-MB-231T and MDA-MB-435), when transfected with the NME1 (Nm23-H1) metastasis suppressor, secreted exosomes with NME1 as the predominant constituent. These exosomes entered recipient tumor cells, altered their endocytic patterns in agreement with NME1 function, and suppressed in vitro tumor cell motility and migration compared to exosomes from control transfectants. Proteomic analysis of exosomes revealed multiple differentially expressed proteins that could exert biological functions. Therefore, we also prepared and investigated liposomes, empty or containing partially purified rNME1. rNME1 containing liposomes recapitulated the effects of exosomes from NME1 transfectants in vitro. In an experimental lung metastasis assay the median lung metastases per histologic section was 158 using control liposomes and 15 in the rNME1 liposome group, 90.5% lower than the control liposome group (P = 0.016). The data expand the exosome/liposome field to include metastasis suppressive functions and describe a new translational approach to prevent metastasis.


Asunto(s)
Neoplasias de la Mama , Exosomas , Neoplasias Pulmonares , Nucleósido Difosfato Quinasas NM23 , Línea Celular Tumoral , Femenino , Humanos , Liposomas , Neoplasias Pulmonares/secundario , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Metástasis de la Neoplasia , Proteómica
13.
J Biol Chem ; 298(9): 102275, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863434

RESUMEN

The chloride intracellular channel-4 (CLIC4) is one of the six highly conserved proteins in the CLIC family that share high structural homology with GST-omega in the GST superfamily. While CLIC4 is a multifunctional protein that resides in multiple cellular compartments, the discovery of its enzymatic glutaredoxin-like activity in vitro suggested that it could function as an antioxidant. Here, we found that deleting CLIC4 from murine 6DT1 breast tumor cells using CRISPR enhanced the accumulation of reactive oxygen species (ROS) and sensitized cells to apoptosis in response to H2O2 as a ROS-inducing agent. In intact cells, H2O2 increased the expression of both CLIC4 mRNA and protein. In addition, increased superoxide production in 6DT1 cells lacking CLIC4 was associated with mitochondrial hyperactivity including increased mitochondrial membrane potential and mitochondrial organelle enlargement. In the absence of CLIC4, however, H2O2-induced apoptosis was associated with low expression and degradation of the antiapoptotic mitochondrial protein Bcl2 and the negative regulator of mitochondrial ROS, UCP2. Furthermore, transcriptomic profiling of H2O2-treated control and CLIC4-null cells revealed upregulation of genes associated with ROS-induced apoptosis and downregulation of genes that sustain mitochondrial functions. Accordingly, tumors that formed from transplantation of CLIC4-deficient 6DT1 cells were highly necrotic. These results highlight a critical role for CLIC4 in maintaining redox-homeostasis and mitochondrial functions in 6DT1 cells. Our findings also raise the possibility of targeting CLIC4 to increase cancer cell sensitivity to chemotherapeutic drugs that are based on elevating ROS in cancer cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Canales de Cloruro , Glutarredoxinas , Peróxido de Hidrógeno , Mitocondrias , Proteínas Mitocondriales , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Femenino , Eliminación de Gen , Glutarredoxinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Necrosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Superóxidos/metabolismo
14.
Mol Cancer Res ; 20(11): 1674-1685, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857355

RESUMEN

The mechanisms of how cancer cells are selected and evolve to establish distant metastatic colonies remain unclear. Tumor heterogeneity and lack of biomarkers are some of the most difficult challenges in cancer biology and treatment. Here using mouse models for triple-negative breast cancer (TNBC) metastasis, we report heterogeneous expression of DNA methyltransferase 3B (DNMT3B) in both mouse and human primary tumors. High levels of DNMT3B were correlated with poor clinical outcomes in multiple human breast cancer datasets. Mechanistically, clonal cells with high DNMT3B (DNMT3BH) showed higher vimentin (VIM) expression and displayed enhanced epithelial-to-mesenchymal transition capacity. Deletion of VIM diminished the metastatic phenotype of DNMT3BH cells. Importantly, in preclinical mouse models in which the primary tumors were surgically removed, perioperative targeting of DNMT3B in combination with chemotherapy markedly suppressed tumor recurrence and metastasis. Our studies identify DNMT3B-mediated transcription regulation as an important mediator of tumor heterogeneity and show that DNMT3B is critical for tumor invasion and metastasis, reinforcing its potential as a target for treating metastatic disease. IMPLICATIONS: Our findings of transcriptome changes mediated by DNMT3B provide new mechanistic insight for intratumor heterogeneity and chemoresistance, and therapeutic targeting of DNMT3B in combination with chemotherapy offer additional treatment options for metastatic disease especially for patients with TNBC.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , ADN Metiltransferasa 3B
15.
PLoS Genet ; 18(6): e1010271, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727842

RESUMEN

The TGF-ß-regulated Chloride Intracellular Channel 4 (CLIC4) is an essential participant in the formation of breast cancer stroma. Here, we used data available from the TCGA and METABRIC datasets to show that CLIC4 expression was higher in breast cancers from younger women and those with early-stage metastatic disease. Elevated CLIC4 predicted poor outcome in breast cancer patients and was linked to the TGF-ß pathway. However, these associations did not reveal the underlying biological contribution of CLIC4 to breast cancer progression. Constitutive ablation of host Clic4 in two murine metastatic breast cancer models nearly eliminated lung metastases without reducing primary tumor weight, while tumor cells ablated of Clic4 retained metastatic capability in wildtype hosts. Thus, CLIC4 was required for host metastatic competence. Pre- and post-metastatic proteomic analysis identified circulating pro-metastatic soluble factors that differed in tumor-bearing CLIC4-deficient and wildtype hosts. Vascular abnormalities and necrosis increased in primary tumors from CLIC4-deficient hosts. Transcriptional profiles of both primary tumors and pre-metastatic lungs of tumor-bearing CLIC4-deficient hosts were consistent with a microenvironment where inflammatory pathways were elevated. Altogether, CLIC4 expression in human breast cancers may serve as a prognostic biomarker; therapeutic targeting of CLIC4 could reduce primary tumor viability and host metastatic competence.


Asunto(s)
Neoplasias de la Mama , Canales de Cloruro , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Canales de Cloruro/biosíntesis , Canales de Cloruro/genética , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Proteómica , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
16.
Cell Genom ; 2(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35720974

RESUMEN

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

17.
Cancers (Basel) ; 14(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35406404

RESUMEN

We integrated ESCC expression and GWAS genotyping, to investigate eQTL and somatic DNA segment alterations, including somatic copy number alteration, allelic imbalance (AI), and loss of heterozygosity (LOH) in ESCC. First, in eQTL analysis, we used a classical approach based on genotype data from GWAS and expression signals in normal tissue samples, and then used a modified approach based on fold change in the tumor vs. normal samples. We focused on the genes in three pathways: inflammation, DNA repair, and immunity. Among the significant (p < 0.05) SNP-probe pairs from classical and modified eQTL analyses, 24 genes were shared by the two approaches, including 18 genes that showed the same numbers of SNPs and probes and 6 genes that had the different numbers of SNPs and probes. For these 18 genes, we found 28 SNP−probe pairs were correlated in opposite directions in the two approaches, indicating an intriguing difference between the classical and modified eQTL approaches. Second, we analyzed the somatic DNA segment alterations. Across the 24 genes, abnormal gene expression on mRNA arrays was seen in 19−95% of cases and 26−78% showed somatic DNA segment alterations on Affymetrix GeneChip Human Mapping Arrays. The results suggested that this strategy could identify gene expression and somatic DNA segment alterations for biological markers (genes) by combining classical and modified eQTLs and somatic DNA evaluation on SNP arrays. Thus, this study approach may allow us to understand functionality indicative of potentially relevant biomarkers in ESCC.

18.
Nat Commun ; 13(1): 374, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042858

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.


Asunto(s)
Canales de Cloruro/genética , Degeneración Macular/genética , Proteínas Mitocondriales/genética , Mutación/genética , Epitelio Pigmentado de la Retina/metabolismo , Animales , Muerte Celular , Canales de Cloruro/deficiencia , Modelos Animales de Enfermedad , Fondo de Ojo , Homeostasis , Metabolismo de los Lípidos , Degeneración Macular/diagnóstico por imagen , Degeneración Macular/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Especificidad de Órganos/genética , Drusas Retinianas/complicaciones , Drusas Retinianas/diagnóstico por imagen , Drusas Retinianas/patología , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/fisiopatología , Epitelio Pigmentado de la Retina/ultraestructura , Factores de Riesgo , Transcripción Genética , Visión Ocular/fisiología
19.
Mol Carcinog ; 60(12): 799-812, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34534377

RESUMEN

Cellular senescence is a well-documented response to oncogene activation in many tissues. Multiple pathways are invoked to achieve senescence indicating its importance to counteract the transforming activities of oncogenic stimulation. We now report that the Rho-associated protein kinase (ROCK) signaling pathway is a critical regulator of oncogene-induced senescence in skin carcinogenesis. Transformation of mouse keratinocytes with oncogenic RAS upregulates ROCK activity and initiates a senescence response characterized by cell enlargement, growth inhibition, upregulation of senescence associated ß-galactosidase (SAßgal) expression, and release of multiple pro-inflammatory factors comprising the senescence-associated secretory phenotype (SASP). The addition of the ROCK inhibitor Y-27632 and others prevents these senescence responses and maintains proliferating confluent RAS transformed keratinocyte cultures indefinitely. Mechanistically, oncogenic RAS transformation is associated with upregulation of cell cycle inhibitors p15Ink4b , p16Ink4a , and p19Arf and downregulation of p-AKT, all of which are reversed by Y-27632. RNA-seq analysis of Y-27632 treated RAS-transformed keratinocytes indicated that the inhibitor reduced growth-inhibitory gene expression profiles and maintained expression of proliferative pathways. Y-27632 also reduced the expression of NF-κB effector genes and the expression of IκBζ downstream mediators. The senescence inhibition from Y-27632 was reversible, and upon its removal, senescence reoccurred in vitro with rapid upregulation of cell cycle inhibitors, SASP expression, and cell detachment. Y-27632 treated cultured RAS-keratinocytes formed tumors in the absence of the inhibitor when placed in skin orthografts suggesting that factors in the tumor microenvironment can overcome the drive to senescence imparted by overactive ROCK activity.


Asunto(s)
Amidas/administración & dosificación , Transformación Celular Neoplásica/efectos de los fármacos , Queratinocitos/citología , Piridinas/administración & dosificación , Neoplasias Cutáneas/patología , Proteínas ras/genética , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/trasplante , Ratones , Piridinas/farmacología , Análisis de Secuencia de ARN , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo
20.
Clin Cancer Res ; 27(15): 4422-4434, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34083229

RESUMEN

PURPOSE: Breast cancer diagnosed in young patients is often aggressive. Because primary breast tumors from young and older patients have similar mutational patterns, we hypothesized that the young host microenvironment promotes more aggressive metastatic disease. EXPERIMENTAL DESIGN: Triple-negative or luminal B breast cancer cell lines were injected into young and older mice side-by-side to quantify lung, liver, and brain metastases. Young and older mouse brains, metastatic and naïve, were analyzed by flow cytometry. Immune populations were depleted using antibodies or a colony-stimulating factor-1 receptor (CSF-1R) inhibitor, and brain metastasis assays were conducted. Effects on myeloid populations, astrogliosis, and the neuroinflammatory response were determined. RESULTS: Brain metastases were 2- to 4-fold higher in young as compared with older mouse hosts in four models of triple-negative or luminal B breast cancer; no age effect was observed on liver or lung metastases. Aged brains, naïve or metastatic, contained fewer resident CNS myeloid cells. Use of a CSF-1R inhibitor to deplete myeloid cells, including both microglia and infiltrating macrophages, preferentially reduced brain metastasis burden in young mice. Downstream effects of CSF-1R inhibition in young mice resembled that of an aged brain in terms of myeloid numbers, induction of astrogliosis, and Semaphorin 3A secretion within the neuroinflammatory response. CONCLUSIONS: Host microenvironmental factors contribute to the aggressiveness of triple-negative and luminal B breast cancer brain metastasis. CSF-1R inhibitors may hold promise for young brain metastasis patients.


Asunto(s)
Neoplasias Encefálicas/secundario , Células Mieloides , Neoplasias de la Mama Triple Negativas/patología , Factores de Edad , Animales , Línea Celular Tumoral , Sistema Nervioso Central/citología , Humanos , Ratones , Receptor de Factor Estimulante de Colonias de Macrófagos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...