Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5224, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890293

RESUMEN

Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.


Asunto(s)
Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Estrés Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Sequías , Phytophthora infestans , Plantas Modificadas Genéticamente , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Eliminación de Gen , Proteómica
2.
iScience ; 27(2): 108941, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38333708

RESUMEN

The significant anatomical changes in large intestine of germ-free (GF) mice provide excellent material for understanding microbe-host crosstalk. We observed significant differences of GF mice in anatomical and physiological involving in enlarged cecum, thinned mucosal layer and enriched water in cecal content. Furthermore, integration analysis of multi-omics data revealed the associations between the structure of large intestinal mesenchymal cells and the thinning of the mucosal layer. Increased Aqp8 expression in GF mice may contribute to enhanced water secretion or altered hydrodynamics in the cecum. In addition, the proportion of epithelial cells, nutrient absorption capacity, immune function and the metabolome of cecum contents of large intestine were also significantly altered. Together, this is the first systematic study of the transcriptome and metabolome of the cecum and colon of GF mice, and these findings contribute to our understanding of the intricate interactions between microbes and the large intestine.

3.
Int J Biol Sci ; 20(1): 387-402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164176

RESUMEN

Colon adenocarcinoma (COAD) is the most common malignancy of the digestive tract, which is characterized by a dismal prognosis. No effective treatment has been established presently, thus there is an urgent need to understand the mechanisms driving COAD progression in order to develop effective therapeutic approaches and enhance clinical outcomes. In this study, we found that KLF7 is overexpressed in COAD tissues and correlated with clinicopathological features of COAD. Both gain-of-function and loss-of-function experiments have unequivocally demonstrated that overexpression of KLF7 promotes the growth and metastasis of COAD in vitro and in vivo, while KLF7 knockdown attenuated these effects. Mechanistically, our findings reveal that KLF7 can specifically bind to the promoter region of PDGFB (TGGGTGGAG), thus promoting the transcription of PDGFB and increasing its secretion. Subsequently, secreted PDGFB facilitates the progression of COAD by activating MAPK/ERK, PI3K/AKT, and JAK/STAT3 signaling pathways through PDGFRß. Additionally, we found that sunitinib can block PDGFB signaling and inhibit COAD progression, offering a promising therapeutic strategy for COAD treatment.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Adenocarcinoma/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Becaplermina , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
4.
Nat Plants ; 9(12): 2085-2094, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38049516

RESUMEN

Plant signalling peptides are typically released from larger precursors by proteolytic cleavage to regulate plant growth, development and stress responses. Recent studies reported the characterization of a divergent family of Brassicaceae-specific peptides, SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs), and their perception by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Here, we reveal that the SCOOP family is highly expanded, containing at least 50 members in the Columbia-0 reference Arabidopsis thaliana genome. Notably, perception of these peptides is strictly MIK2-dependent. How bioactive SCOOP peptides are produced, and to what extent their perception is responsible for the multiple physiological roles associated with MIK2 are currently unclear. Using N-terminomics, we validate the N-terminal cleavage site of representative PROSCOOPs. The cleavage sites are determined by conserved motifs upstream of the minimal SCOOP bioactive epitope. We identified subtilases necessary and sufficient to process PROSCOOP peptides at conserved cleavage motifs. Mutation of these subtilases, or their recognition motifs, suppressed PROSCOOP cleavage and associated overexpression phenotypes. Furthermore, we show that higher-order mutants of these subtilases show phenotypes reminiscent of mik2 null mutant plants, consistent with impaired PROSCOOP biogenesis, and demonstrating biological relevance of SCOOP perception by MIK2. Together, this work provides insights into the molecular mechanisms underlying the functions of the recently identified SCOOP peptides and their receptor MIK2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Proteínas de Arabidopsis/genética , Serina , Arabidopsis/fisiología , Péptidos , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética
5.
Comput Struct Biotechnol J ; 21: 3466-3477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152123

RESUMEN

The gut-liver axis is a complex bidirectional communication pathway between the intestine and the liver in which microorganisms and their metabolites flow from the intestine through the portal vein to the liver and influence liver function. In a sterile environment, the phenotype or function of the liver is altered, but few studies have investigated the specific cellular and molecular effects of microorganisms on the liver. To this end, we constructed single-cell and spatial transcriptomic (ST) profiles of germ-free (GF) and specific-pathogen-free (SPF) mouse livers. Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) revealed that the ratio of most immune cells was altered in the liver of GF mice; in particular, natural killer T (NKT) cells, IgA plasma cells (IgAs) and Kupffer cells (KCs) were significantly reduced in GF mice. Spatial enhanced resolution omics sequencing (Stereo-seq) confirmed that microorganisms mediated the accumulation of Kupffer cells in the periportal zone. Unexpectedly, IgA plasma cells were more numerous and concentrated in the periportal vein in liver sections from SPF mice but less numerous and scattered in GF mice. ST technology also enables the precise zonation of liver lobules into eight layers and three patterns based on the gene expression level in each layer, allowing us to further investigate the effects of microbes on gene zonation patterns and functions. Furthermore, untargeted metabolism experiments of the liver revealed that the propionic acid levels were significantly lower in GF mice, and this reduction may be related to the control of genes involved in bile acid and fatty acid metabolism. In conclusion, the combination of sc/snRNA-seq, Stereo-seq, and untargeted metabolomics revealed immune system defects as well as altered bile acid and lipid metabolic processes at the single-cell and spatial levels in the livers of GF mice. This study will be of great value for understanding host-microbiota interactions.

6.
Adv Sci (Weinh) ; 10(12): e2207152, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36755192

RESUMEN

Recent genetic evidence has linked WNT downstream mutations to fat distribution. However, the roles of WNTs in human obesity remain unclear. Here, the authors screen all Wnt-related paracrine factors in 1994 obese cases and 2161 controls using whole-exome sequencing (WES) and identify that 12 obese patients harbor the same mutations in RSPO1 (p.R219W/Q) predisposing to human obesity. RSPO1 is predominantly expressed in visceral fat, primarily in the fibroblast cluster, and is increased with adiposity. Mice overexpressing human RSPO1 in adipose tissues develop obesity under a high-fat diet (HFD) due to reduced brown/beige fat thermogenesis. In contrast, Rspo1 ablation resists HFD-induced adiposity by increasing thermogenesis. Mechanistically, RSPO1 overexpression or administration significantly inhibits adipocyte mitochondrial respiration and thermogenesis via LGR4-Wnt/ß-catenin signaling pathway. Importantly, humanized knockin mice carrying the hotspot mutation (p.R219W) display suppressed thermogenesis and recapitulate the adiposity feature of obese carriers. The mutation disrupts RSPO1's electrostatic interaction with the extracellular matrix, leading to excessive RSPO1 release that activates LGR4-Wnt/ß-catenin signaling and attenuates thermogenic capacity in differentiated beige adipocytes. Therefore, these findings identify that gain-of-function mutations and excessive expression of RSPO1, acting as a paracrine Wnt activator, suppress fat thermogenesis and contribute to obesity in humans.


Asunto(s)
Adipocitos Beige , Adiposidad , Humanos , Ratones , Animales , Adiposidad/genética , Adipocitos Beige/metabolismo , Obesidad/genética , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Termogénesis/genética , Mutación/genética , Trombospondinas/genética , Trombospondinas/metabolismo
8.
J Mater Chem B ; 10(11): 1709-1733, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35179545

RESUMEN

Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system to detect specific cancer cells for efficient elimination. Unfortunately, the efficacy of these treatments has been limited to a fraction of patients within a subset of tumor types, and further studies are still needed to clarify these mechanisms and develop novel approaches to improve the efficacy of cancer immunotherapy. Emerging data suggest that the innate immune system also plays a key role in tumor immunosurveillance and generation of antitumor immune responses. Nanoparticles incorporating immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance antitumor immunity. Such nanoparticle-based cancer immunotherapies have received considerable attention and have been extensively studied in recent years. In this review, we will discuss the anticancer activities of nanoparticles designed to target innate immune pathways, including Toll-like receptor, nucleotide-binding oligomerization domain-like receptor, and retinoic acid-inducible gene-I-like receptor pathways, as well as DNA sensing pathways. In addition, nanoparticles that target key innate immune cell types, such as macrophages, myeloid-derived suppressor cells, dendritic cells, natural killer cells, and neutrophils, also will be investigated. In summary, although further research and clinical studies are still needed to solve the safety concerns and improve the efficacy of nanoplatform-based cancer immunotherapy, the recent studies presented in this review prove that nanoparticle-incorporated cancer immunotherapy is a highly promising treatment for cancer patients.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Sistema Inmunológico/patología , Inmunoterapia , Neoplasias/patología , Microambiente Tumoral/fisiología
9.
Front Oncol ; 12: 844648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223528

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Gemcitabine is the most commonly used chemotherapy for the treatment of PDAC, but the development of drug resistance still remains challenging. Recently, exosomes have emerged as important mediators for intercellular communication. Exosomes affect recipient cells' behavior through the engulfed cargos, however the specific cargos responsible for gemcitabine resistance in PDAC are poorly understood. Here, we reported that exosomes could transfer gemcitabine resistance via a metalloproteinase 14 (MMP14)-dependent mechanism. MMP14 was identified as a major differentially secreted protein from the gemcitabine-resistant PDAC cells by comparative secretome. It was packaged into the exosomes and transmitted from the chemoresistant cells to the sensitive ones. The exosome-transferred MMP14 could enhance drug resistance and promotes the sphere-formation and migration abilities of the recipient sensitive PDAC cells. Mechanically, exosome-transferred MMP14 promotes the stability of CD44, the cancer stem cell marker in the recipient cells. Our results indicate that MMP14 is a key player for exosome-mediated transfer of gemcitabine resistance, thus targeting MMP14 in exosomes may represent a novel strategy to limit gemcitabine resistance in PDAC.

10.
Front Oncol ; 11: 740452, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804930

RESUMEN

Despite that androgen-deprivation therapy results in long-lasting responses, the disease inevitably progresses to metastatic castration-resistant prostate cancer. In this study, we identified miR-33b-3p as a tumor suppressor in prostate cancer. miR-33b-3p was significantly reduced in prostate cancer tissues, and the low expression of miR-33b-3p was correlated with poor overall survival of prostate cancer patients. Overexpression of miR-33b-3p inhibited both migration and invasion of highly metastatic prostate cancer cells whereas inhibition of miR-33b-3p promoted those processes in lowly metastatic cells. The in vivo results demonstrate that miR-33b-3p suppresses metastasis of tail vein inoculated prostate cancer cells to lung and lymph nodes in mice. DOCK4 was validated as the direct target of miR-33b-3p. miR-33b-3p decreased the expression of DOCK4 and restoration of DOCK4 could rescue miR-33b-3p inhibition on cell migration and invasion. Moreover, downregulation of miR-33b-3p was induced by bortezomib, the clinically used proteasome inhibitor, and overexpression of miR-33b-3p enhanced the insufficient inhibition of bortezomib on migration and invasion as well as metastasis of prostate cancer cells. In summary, our findings demonstrate that miR-33b-3p suppresses metastasis by targeting DOCK4 in prostate cancer. Our results suggest that enhancing miR-33b-3p expression may provide a promising therapeutic strategy for overcoming that proteasome inhibitor's poor efficacy against metastatic prostate cancer.

11.
Mol Immunol ; 137: 155-162, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34252709

RESUMEN

Naringenin (Nar) is a flavanone that has been suggested to provide human health benefits such as anti-inflammatory, anti-oxidant and anti-cancer properties. However, the mechanisms underlying these benefits are complex and still not fully understood. In this study, we investigated the effect of Nar on the inflammatory response of macrophages and its underlying mechanism. In lipopolysaccharide (LPS)-stimulated human macrophages, Nar inhibited the activation of NF-κB pathway and suppressed the downstream expression of pro-inflammatory factors. In addition, Nar was also able to induce metallothionein 1 G (MT1G) expression, and the inhibitory effects of Nar on the production of pro-inflammatory cytokines was dependent on MT1G. Mechanistically, we found that MT1G-mediated inhibition of pro-inflammatory cytokines responses might be through repressing NF-κB activation via zinc chelation. Overall, this study reveals a novel mechanism of Nar on inflammatory responses, the suppression of NF-κB activation through upregulation of MT1G.


Asunto(s)
Antiinflamatorios/farmacología , Citocinas/metabolismo , Flavanonas/farmacología , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Antioxidantes/farmacología , Células Cultivadas , Células HEK293 , Humanos , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Metalotioneína/farmacología , Transducción de Señal/efectos de los fármacos , Células THP-1/efectos de los fármacos , Células THP-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Genome Res ; 31(7): 1150-1158, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34155038

RESUMEN

Protein-truncating variants (PTVs) have important impacts on phenotype diversity and disease. However, their population genetics characteristics in more globally diverse populations are not well defined. Here, we describe patterns of PTVs in 1320 genes sequenced in 10,539 healthy controls and 9434 patients with psoriasis, all of Han Chinese ancestry. We identify 8720 PTVs, of which 77% are novel, and estimate 88% of all PTVs are deleterious and subject to purifying selection. Furthermore, we show that individuals with psoriasis have a significantly higher burden of PTVs compared to controls (P = 0.02). Finally, we identified 18 PTVs in 14 genes with unusually high levels of population differentiation, consistent with the action of local adaptation. Our study provides insights into patterns and consequences of PTVs.

13.
Theranostics ; 11(7): 3196-3212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33537082

RESUMEN

Resistance to chemotherapy is a long-standing problem in the management of cancer, and cancer stem cells are regarded as the main source of this resistance. This study aimed to investigate metallothionein (MT)-1G involvement in the regulation of cancer stemness and provide a strategy to overcome chemoresistance in pancreatic ductal adenocarcinoma (PDAC). Methods: MT1G was identified as a critical factor related with gemcitabine resistance in PDAC cells by mRNA microarray. Its effects on PDAC stemness were evaluated through sphere formation and tumorigenicity. LC-MS/MS analysis of conditional medium revealed that activin A, a NF-κB target, was a major protein secreted from gemcitabine resistant PDAC cells. Both loss-of-function and gain-of-function approaches were used to validate that MT1G inhibited NF-κB-activin A pathway. Orthotopic pancreatic tumor model was employed to explore the effects on gemcitabine resistance with recombinant follistatin to block activin A. Results: Downregulation of MT1G due to hypermethylation of its promoter is related with pancreatic cancer stemness. Secretome analysis revealed that activin A, a NF-κB target, was highly secreted by drug resistant cells. It promotes pancreatic cancer stemness in Smad4-dependent or independent manners. Mechanistically, MT1G negatively regulates NF-κB signaling and promotes the degradation of NF-κB p65 subunit by enhancing the expression of E3 ligase TRAF7. Blockade of activin A signaling with follistatin could overcome gemcitabine resistance. Conclusions: MT1G suppresses PDAC stemness by limiting activin A secretion via NF-κB inhibition. The blockade of the activin A signaling with follistatin may provide a promising therapeutic strategy for overcoming gemcitabine resistance in PDAC.


Asunto(s)
Activinas/metabolismo , Metalotioneína/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , China , Cromatografía Liquida , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Metalotioneína/genética , Ratones Endogámicos C57BL , Ratones Desnudos , FN-kappa B/metabolismo , Células Madre Neoplásicas/fisiología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem , Factor de Transcripción ReIA/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
14.
Nat Commun ; 12(1): 705, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514716

RESUMEN

Plant genomes encode hundreds of receptor kinases and peptides, but the number of known plant receptor-ligand pairs is limited. We report that the Arabidopsis leucine-rich repeat receptor kinase LRR-RK MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2) is the receptor for the SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) phytocytokines. MIK2 is necessary and sufficient for immune responses triggered by multiple SCOOP peptides, suggesting that MIK2 is the receptor for this divergent family of peptides. Accordingly, the SCOOP12 peptide directly binds MIK2 and triggers complex formation between MIK2 and the BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) co-receptor. MIK2 is required for resistance to the important root pathogen Fusarium oxysporum. Notably, we reveal that Fusarium proteomes encode SCOOP-like sequences, and corresponding synthetic peptides induce MIK2-dependent immune responses. These results suggest that MIK2 may recognise Fusarium-derived SCOOP-like sequences to induce immunity against Fusarium. The definition of SCOOPs as MIK2 ligands will help to unravel the multiple roles played by MIK2 during plant growth, development and stress responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas Fúngicas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/inmunología , Clonación Molecular , Resistencia a la Enfermedad/inmunología , Proteínas Fúngicas/inmunología , Fusarium/inmunología , Fusarium/metabolismo , Fusarium/patogenicidad , Péptidos y Proteínas de Señalización Intercelular/inmunología , Ligandos , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/inmunología , Transducción de Señal/inmunología , Nicotiana/genética , Nicotiana/inmunología
15.
Semin Cancer Biol ; 68: 105-122, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883910

RESUMEN

The ubiquitin-proteasome system (UPS) plays a central role in the degradation of cellular proteins. Targeting protein degradation has been validated as an effective strategy for cancer therapy since 2003. Several components of the UPS have been validated as potential anticancer targets, including 20S proteasomes, 19S proteasome-associated deubiquitinases (DUBs) and ubiquitin ligases (E3s). 20S proteasome inhibitors (such as bortezomib/BTZ and carfilzomib/CFZ) have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) and some other liquid tumors. Although survival of MM patients has been improved by the introduction of BTZ-based therapies, these clinical 20S proteasome inhibitors have several limitations, including emergence of resistance in MM patients, neuro-toxicities, and little efficacy in solid tumors. One of strategies to improve the current status of cancer treatment is to repurpose old drugs with UPS-inhibitory properties as new anticancer agents. Old drug reposition represents an attractive drug discovery approach compared to the traditional de novo drug discovery process which is time-consuming and costly. In this review, we summarize status of repurposed inhibitors of various UPS components, including 20S proteasomes, 19S-associated DUBs, and ubiquitin ligase E3s. The original and new mechanisms of action, molecular targets, and potential anticancer activities of these repurposed UPS inhibitors are reviewed, and their new uses including combinational therapies for cancer treatment are discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/uso terapéutico , Animales , Humanos , Ubiquitina/metabolismo
16.
Mol Ther Nucleic Acids ; 19: 974-985, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32036249

RESUMEN

Drug resistance is the major obstacle of gemcitabine-based chemotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC). Many long non-coding RNAs (lncRNAs) are reported to play vital roles in cancer initiation and progression. Here, we report that lncRNA SLC7A11-AS1 is involved in gemcitabine resistance of PDAC. SLC7A11-AS1 is overexpressed in PDAC tissues and gemcitabine-resistant cell lines. Knockdown of SLC7A11-AS1 weakens the PDAC stemness and potentiates the sensitivity of resistant PDAC cells toward gemcitabine in vitro and in vivo. SLC7A11-AS1 promotes chemoresistance through reducing intracellular reactive oxygen species (ROS) by stabilizing nuclear factor erythroid-2-related factor 2 (NRF2), the key regulator in antioxidant defense. Mechanically, SLC7A11-AS1 is co-localized with ß-TRCP1 in the nucleus. The exon 3 of SLC7A11-AS1 interacts with the F-box motif of ß-TRCP1, the critical domain that recruits ß-TRCP1 to the SCFß-TRCP E3 complex. This interaction prevents the consequent ubiquitination and proteasomal degradation of NRF2 in the nucleus. Our results demonstrate that the overexpression of SLC7A11-AS1 in gemcitabine-resistant PDAC cells can scavenge ROS by blocking SCFß-TRCP-mediated ubiquitination and degradation of NRF2, leading to a low level of intracellular ROS, which is required for the maintenance of cancer stemness. These findings suggest SLC7A11-AS1 as a therapeutic target to overcome gemcitabine resistance for PDAC treatment.

17.
Small ; 15(41): e1903596, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31441213

RESUMEN

Elemental tantalum is a well-known biomedical metal in clinics due to its extremely high biocompatibility, which is superior to that of other biomedical metallic materials. Hence, it is of significance to expand the scope of biomedical applications of tantalum. Herein, it is reported that tantalum nanoparticles (Ta NPs), upon surface modification with polyethylene glycol (PEG) molecules via a silane-coupling approach, are employed as a metallic photoacoustic (PA) contrast agent for multiwavelength imaging of tumors. By virtue of the broad optical absorbance from the visible to near-infrared region and high photothermal conversion efficiency (27.9%), PEGylated Ta NPs depict high multiwavelength contrast capability for enhancing PA imaging to satisfy the various demands (penetration depth, background noise, etc.) of clinical diagnosis as needed. Particularly, the PA intensity of the tumor region postinjection is greatly increased by 4.87, 7.47, and 6.87-fold than that of preinjection under 680, 808, and 970 nm laser irradiation, respectively. In addition, Ta NPs with negligible cytotoxicity are capable of eliminating undesirable reactive oxygen species, ensuring the safety for biomedical applications. This work introduces a silane-coupling strategy for the surface engineering of Ta NPs, and highlights the potential of Ta NPs as a biocompatible metallic contrast agent for multiwavelength photoacoustic image.


Asunto(s)
Medios de Contraste/química , Nanopartículas/química , Neoplasias/diagnóstico , Técnicas Fotoacústicas , Polietilenglicoles/química , Tantalio/química , Animales , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inyecciones Intravenosas , Ratones , Nanopartículas/ultraestructura , Espectroscopía de Fotoelectrones , Especies Reactivas de Oxígeno/metabolismo
18.
Cell Death Dis ; 10(8): 604, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31406116

RESUMEN

After publication of this article, the below errors were noticed:1. The SOX2 primer is incorrect in Table S2.2. The Poly(T) adaptor sequence of reverse transcription for miR-145 detection is missing in Table S2.This error did not impact the conclusions of the article. We apologize for any confusion or inconvenience to the readers.An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Curr Pharm Des ; 25(30): 3248-3256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31419930

RESUMEN

Repurposing already approved drugs as new anticancer agents is a promising strategy considering the advantages such as low costs, low risks and less time-consumption. Disulfiram (DSF), as the first drug for antialcoholism, was approved by the U.S. Food and Drug Administration (FDA) over 60 years ago. Increasing evidence indicates that DSF has great potential for the treatment of various human cancers. Several mechanisms and targets of DSF related to cancer therapy have been proposed, including the inhibition of ubiquitin-proteasome system (UPS), cancer cell stemness and cancer metastasis, and alteration of the intracellular reactive oxygen species (ROS). This article provides a brief review about the history of the use of DSF in humans and its molecular mechanisms and targets of anticancer therapy, describes DSF delivery strategies for cancer treatment, summarizes completed and ongoing cancer clinical trials involving DSF, and offers strategies to better use DSF in cancer therapies.


Asunto(s)
Disulfiram/farmacología , Neoplasias/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal , Especies Reactivas de Oxígeno/metabolismo
20.
HLA ; 94(3): 314-315, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31115166

RESUMEN

One nucleotide replacement at position 643 of HLA-A*30:01:01 results in a novel allele, HLA-A*30:115.


Asunto(s)
Alelos , Antígeno HLA-A3/genética , Mutación Puntual , Análisis de Secuencia de ADN , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA