Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 3720, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697958

RESUMEN

Spin-orbit coupling in noncentrosymmetric crystals leads to spin-momentum locking - a directional relationship between an electron's spin angular momentum and its linear momentum. Isotropic orthogonal Rashba spin-momentum locking has been studied for decades, while its counterpart, isotropic parallel Weyl spin-momentum locking has remained elusive in experiments. Theory predicts that Weyl spin-momentum locking can only be realized in structurally chiral cubic crystals in the vicinity of Kramers-Weyl or multifold fermions. Here, we use spin- and angle-resolved photoemission spectroscopy to evidence Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa. We find that the electron spin of the Fermi arc surface states is orthogonal to their Fermi surface contour for momenta close to the projection of the bulk multifold fermion at the Γ point, which is consistent with Weyl spin-momentum locking of the latter. The direct measurement of the bulk spin texture of the multifold fermion at the R point also displays Weyl spin-momentum locking. The discovery of Weyl spin-momentum locking may lead to energy-efficient memory devices and Josephson diodes based on chiral topological semimetals.

3.
BMC Genomics ; 25(1): 518, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802743

RESUMEN

Morchella spongiola is a highly prized mushroom for its delicious flavor and medical value and is one of the most flourishing, representative, and dominant macrofungi in the Qilian Mountains of the Qinghai-Tibet Plateau subkingdoms (QTPs). However, the understanding of M. spongiola remains largely unknown, and its taxonomy is ambiguous. In this study, we redescribed a unique species of M. spongiola, i.e., micromorphology, molecular data, genomics, and comparative genomics, and the historical biogeography of M. spongiola were estimated for 182 single-copy homologous genes. A high-quality chromosome-level reference genome of M. spongiola M12-10 was obtained by combining PacBio HiFi data and Illumina sequencing technologies; it was approximately 57.1 Mb (contig N50 of 18.14 Mb) and contained 9775 protein-coding genes. Comparative genome analysis revealed considerable conservation and unique characteristics between M. spongiola M12-10 and 32 other Morchella species. Molecular phylogenetic analysis indicated that M. spongiola M12-10 is similar to the M. prava/Mes-7 present in sandy soil near rivers, differentiating from black morels ~ 43.06 Mya (million years ago), and diverged from M. parva/Mes-7 at approximately 12.85 Mya (in the Miocene epoch), which is closely related to the geological activities in the QTPs (in the Neogene). Therefore, M. spongiola is a unique species rather than a synonym of M. vulgaris/Mes-5, which has a distinctive grey-brown sponge-like ascomata. This genome of M. spongiola M12-10 is the first published genome sequence of the species in the genus Morchella from the QTPs, which could aid future studies on functional gene identification, germplasm resource management, and molecular breeding efforts, as well as evolutionary studies on the Morchella taxon in the QTPs.


Asunto(s)
Genoma Fúngico , Genómica , Filogenia , Genómica/métodos , Evolución Molecular , Ascomicetos/genética , Ascomicetos/clasificación
4.
Aging (Albany NY) ; 16(4): 3734-3749, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364250

RESUMEN

BACKGROUND: Cutaneous melanoma (CM) remains a significant threat to human health. There are clues to the potential role of hypoxia in CM progression. However, the role of hypoxia-related lncRNAs (HRLs) in CM has not been clarified. METHODS: We obtained hypoxia related genes from MSigDB database and subsequently identified HRLs by applying TCGA database. LASSO-univariate and multivariate Cox analysis were used to comprehensively analyze the survival characteristics and HRLs expressions, and a novel HRLs-related prognostic risk model was subsequently established for comprehensive analysis. RESULTS: The established risk model could evaluate the clinical outcome of CM accurately. The ability of the model-related risk score was also validated as an independent prognostic indicator of CM. Immune infiltration, TMB analysis, drug sensitivity analysis and immunotherapy evaluation were conducted to comprehensively assess the possible causes of the difference in prognosis. The reliability of bioinformatics results was partially verified by RT-qPCR. CONCLUSION: We established a new HRLs related risk model and discussed the potential role of hypoxia in the development of CM, which provided a novel basis for CM risk stratification.


Asunto(s)
Melanoma , ARN Largo no Codificante , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , ARN Largo no Codificante/genética , Pronóstico , Reproducibilidad de los Resultados , Hipoxia/genética
5.
PeerJ ; 12: e16620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406296

RESUMEN

Kobresia humilis is a major species in the alpine meadow communities of the Qinghai-Tibet Plateau (QTP); it plays a crucial role in maintaining the ecological balance of these meadows. Nevertheless, little is known about the rhizosphere fungi associated with K. humilis on the Qinghai Tibet Plateau. In this study, we used Illumina Miseq to investigate the fungal diversity, community structure, and ecological types in the root and rhizosphere soil of K. humilis across eight areas on the QTP and analyzed the correlation between rhizosphere fungi of K. humilis and environmental factors. A total of 19,423 and 25,101 operational taxonomic units (OTUs) were obtained from the roots and rhizosphere soil of K. humilis. These were classified into seven phyla, 25 classes, 68 orders, 138 families, and 316 genera in the roots, and nine phyla, 31 classes, 76 orders, 152 families, and 407 genera in the rhizosphere soil. There were 435 and 415 core OTUs identified in root and rhizosphere soil, respectively, which were categorized into 68 and 59 genera, respectively, with 25 shared genera. Among them, the genera with a relative abundance >1% included Mortierella, Microscypha, Floccularia, Cistella, Gibberella, and Pilidium. Compared with the rhizosphere soil, the roots showed five differing fungal community characteristics, as well as differences in ecological type, and in the main influencing environmental factors. First, the diversity, abundance, and total number of OTUs in the rhizosphere soil of K. humilis were higher than for the endophytic fungi in the roots by 11.85%, 9.85%, and 22.62%, respectively. The composition and diversity of fungal communities also differed between the eight areas. Second, although saprotroph-symbiotrophs were the main ecological types in both roots and rhizosphere soil; there were 62.62% fewer pathotrophs in roots compared to the rhizosphere soil. Thirdly, at the higher altitude sites (3,900-4,410 m), the proportion of pathotroph fungi in K. humilis was found to be lower than at the lower altitude sites (3,200-3,690 m). Fourthly, metacommunity-scale network analysis showed that during the long-term evolutionary process, ZK (EICZK = 1) and HY (EICHY = 1) were critical sites for development of the fungal community structure in the roots and rhizosphere soil of K. humilis, respectively. Fifthly, canonical correspondence analysis (CCA) showed that key driving factors in relation to the fungal community were longitude (R2 = 0.5410) for the root community and pH (R2 = 0.5226) for the rhizosphere soil community. In summary, these results show that K. humilis fungal communities are significantly different in the root and rhizosphere soil and at the eight areas investigated, indicating that roots select for specific microorganisms in the soil. This is the first time that the fungal distribution of K. humilis on the QTP in relation to long-term evolutionary processes has been investigated. These findings are critical for determining the effects of environmental variables on K. humilis fungal communities and could be valuable when developing guidance for ecological restoration and sustainable utilization of the biological resources of the QTP.


Asunto(s)
Ascomicetos , Carex (Planta) , Humanos , Tibet , Rizosfera , Raíces de Plantas/microbiología , Suelo/química
7.
Science ; 381(6655): 291-296, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471552

RESUMEN

High-performance thermogalvanic cells have the potential to convert thermal energy into electricity, but their effectiveness is limited by the low concentration difference of redox ions. We report an in situ photocatalytically enhanced redox reaction that generates hydrogen and oxygen to realize a continuous concentration gradient of redox ions in thermogalvanic devices. A linear relation between thermopower and hydrogen production rate was established as an essential design principle for devices. The system exhibited a thermopower of 8.2 millivolts per kelvin and a solar-to-hydrogen efficiency of up to 0.4%. A large-area generator (112 square centimeters) consisting of 36 units yielded an open-circuit voltage of 4.4 volts and a power of 20.1 milliwatts, as well 0.5 millimoles of hydrogen and 0.2 millimoles of oxygen after 6 hours of outdoor operation.

8.
Front Oncol ; 13: 1078915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188188

RESUMEN

Patients with chemo-refractory metastatic colorectal cancer (mCRC) have poor prognoses. The application of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors encouragingly improved the survival of mCRC patients with microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR). Unfortunately, it was ineffective for mCRC with microsatellite-stable (MSS)/proficient mismatch repair (pMMR), which accounted for 95% of mCRC. Radiotherapy can promote local control by directly killing tumor cells and inducing positive immune activities, which might help synergistically with immunotherapy. We present the report of an advanced MSS/pMMR mCRC patient who had progressive disease (PD) after first-line chemotherapy, palliative surgery and second-line chemotherapy combined with targeted therapy. Then the patient received the therapy of PD-1 inhibitor combined with radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF). According to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1), the patient showed a complete response (CR) after triple-combined therapy with progression-free survival (PFS) for more than 2 years so far. The patient had no other significant adverse reactions except for fatigue (Grade 1). The triple-combination therapy provided a promising strategy for metastatic chemo-refractory MSS/pMMR mCRC patients.

9.
Nat Commun ; 14(1): 1342, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906625

RESUMEN

Encapsulation engineering is an effective strategy to improve the stability of perovskite solar cells. However, current encapsulation materials are not suitable for lead-based devices because of their complex encapsulation processes, poor thermal management, and inefficient lead leakage suppression. In this work, we design a self-crosslinked fluorosilicone polymer gel, achieving nondestructive encapsulation at room temperature. Moreover, the proposed encapsulation strategy effectively promotes heat transfer and mitigates the potential impact of heat accumulation. As a result, the encapsulated devices maintain 98% of the normalized power conversion efficiency after 1000 h in the damp heat test and retain 95% of the normalized efficiency after 220 cycles in the thermal cycling test, satisfying the requirements of the International Electrotechnical Commission 61215 standard. The encapsulated devices also exhibit excellent lead leakage inhibition rates, 99% in the rain test and 98% in the immersion test, owing to excellent glass protection and strong coordination interaction. Our strategy provides a universal and integrated solution for achieving efficient, stable, and sustainable perovskite photovoltaics.

10.
Radiology ; 307(4): e221499, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36975813

RESUMEN

Background There are limited data on new ischemic brain lesions after endovascular treatment for symptomatic intracranial atherosclerotic stenosis (ICAS). Purpose To investigate the (a) characteristics of new ischemic brain lesions at diffusion-weighted MRI (new diffusion abnormalities) after endovascular treatment, (b) characteristics between those treated with balloon angioplasty and stent placement procedures, and (c) predictors of new ischemic brain lesions. Materials and Methods Patients with symptomatic ICAS in whom maximum medical therapy failed were prospectively enrolled between April 2020 and July 2021 from a national stroke center and underwent endovascular treatment. All study participants underwent thin-section diffusion-weighted MRI (voxel size, 1.4 × 1.4 × 2 mm3 with no section gap) before and after treatment. The characteristics of new ischemic brain lesions were recorded. Multivariable logistic regression analysis was performed to determine potential predictors of new ischemic brain lesions. Results A total of 119 study participants (mean age, 59 years ± 11 [SD]; 81 men; 70 treated with balloon angioplasty and 49 with stent placement) were enrolled. Of the 119 participants, 77 (65%) had new ischemic brain lesions. Five of the 119 participants (4%) had symptomatic ischemic stroke. New ischemic brain lesions were located in (61%, 72 of 119) and/or beyond (35%, 41 of 119) the territory of the treated artery. Of the 77 participants with new ischemic brain lesions, 58 (75%) had lesions located in peripheral brain areas. There was no evidence of a difference in the frequency of new ischemic brain lesions between the balloon angioplasty and stent groups (60% vs 71%, P = .20). In adjusted models, cigarette smoking (odds ratio [OR], 3.6; 95% CI: 1.3, 9.7) and more than one operative attempt (OR, 2.9; 95% CI: 1.2, 7.0) were independent predictors of new ischemic brain lesions. Conclusion New ischemic brain lesions on diffusion-weighted MRI scans were common after endovascular treatment for symptomatic intracranial atherosclerotic stenosis, and occurrence may be associated with cigarette smoking and the number of operative attempts. Clinical trial registration no. ChiCTR2100052925 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Russell in this issue.


Asunto(s)
Procedimientos Endovasculares , Arteriosclerosis Intracraneal , Accidente Cerebrovascular , Masculino , Humanos , Persona de Mediana Edad , Procedimientos Endovasculares/métodos , Constricción Patológica , Accidente Cerebrovascular/etiología , Angioplastia/efectos adversos , Stents , Arteriosclerosis Intracraneal/diagnóstico por imagen , Arteriosclerosis Intracraneal/terapia , Arteriosclerosis Intracraneal/complicaciones , Resultado del Tratamiento
11.
ACS Omega ; 7(45): 41137-41146, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406575

RESUMEN

OH* and CH* chemiluminescence in hydrocarbon flames are often applied to characterize flame structure, equivalence ratio, strain rate, heat release rate, etc. In this study, chemiluminescence images of OH*, CH*, and CO2* in the CH4/O2 diffusion flame were obtained using a CCD camera imaging system. The effect of CO2 dilution on the flame structure, strain rate, and other flame characteristics of CH4/O2 diffusion flame was discussed. The results show that CO2 dilution greatly affects flame morphology and chemiluminescence intensity. There are quantitative functions between the chemiluminescence peak intensity of OH* and CH* and the CO2 dilution level. The CO2* average intensity in the flame zone is better suited to characterize the dilution level than the CO2* peak intensity. Moreover, the strain rate of CO2-diluted laminar flame is defined. It is found that there is a linear relationship between the thickness of the OH* reaction zone and the square root of the strain rate.

12.
Front Plant Sci ; 13: 975853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212375

RESUMEN

The wax esters are important cuticular wax composition that cover the outer surface of plant organs and play a critical role in protection and energy metabolism. Wax ester synthesis in plant is catalyzed by a bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase (WSD). Sunflower (Helianthus annuus L.) is an important oil crop in the world; however, little is known about WSD in sunflower. In this study, we identified and performed a functional analysis of twelve HaWSD genes from sunflower genome. Tissue-specific expression revealed that 12 HaWSD genes were differentially expressed in various organs and tissues of sunflower, except seeds. HaWSD genes were highly induced by salinity, drought, cold, and abscisic acid (ABA) in sunflower. To ascertain their function, HaWSD9, with highly expressed levels in stems and leaves, was cloned and expressed in a yeast mutant defective in triacylglycerol (TAG) biosynthesis. HaWSD9 complemented the phenotype by producing wax ester but not TAG in vivo, indicating that it functions as a wax ester synthase. Subcellular localization analysis indicated that HaWSD9 was located in the endoplasmic reticulum (ER). Heterologous introduction of HaWSD9 into Arabidopsis wsd1 mutant exhibited increased epicuticular wax crystals and cuticular wax contents on the stems. As compared with the wsd1 mutant, HaWSD9 overexpressing transgenic Arabidopsis showed less cuticle permeability, chlorophyll leaching and water loss rate. Further analysis showed that the HaWSD9 transgenics enhanced tolerance to ABA, mannitol, drought and salinity, and maintained higher leaf relative water content (RWC) than the wsd1 mutant under drought stress, suggesting that HaWSD9 play an important physiological role in stress response as well as wax synthase. These results contribute to understanding the function of HaWSD genes in wax ester synthesis and stress tolerance in sunflower.

13.
Front Immunol ; 13: 952066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874780

RESUMEN

Patients with metastatic cancer refractory to standard systemic therapies have a poor prognosis and few therapeutic options. Radiotherapy can shape the tumor microenvironment (TME) by inducing immunogenic cell death and promoting tumor recognition by natural killer cells and T lymphocytes. Granulocyte macrophage-colony stimulating factor (GM-CSF) was known to promote dendric cell maturation and function, and might also induce the macrophage polarization with anti-tumor capabilities. A phase II trial (ChiCTR1900026175) was conducted to assess the clinical efficacy and safety of radiotherapy, PD-1 inhibitor and GM-CSF (PRaG regimen). This trial was registered at http://www.chictr.org.cn/index.aspx. A PRaG cycle consisted of 3 fractions of 5 or 8 Gy delivered for one metastatic lesion from day 1, followed by 200 µg subcutaneous injection of GM-CSF once daily for 2 weeks, and intravenous infusion of PD-1 inhibitor once within one week after completion of radiotherapy. The PRaG regimen was repeated every 21 days for at least two cycles. Once the PRaG therapy was completed, the patient continued PD-1 inhibitor monotherapy until confirmed disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR). A total of 54 patients were enrolled with a median follow-up time of 16.4 months. The ORR was 16.7%, and the disease control rate was 46.3% in intent-to-treat patients. Median progression-free survival was 4.0 months (95% confidence interval [CI], 3.3 to 4.8), and median overall survival was 10.5 months (95% CI, 8.7 to 12.2). Grade 3 treatment-related adverse events occurred in five patients (10.0%) and grade 4 in one patient (2.0%). Therefore, the PRaG regimen was well tolerated with acceptable toxicity and may represent a promising salvage treatment for patients with chemotherapy-refractory solid tumors. It is likely that PRaG acts via heating upthe TME with radiotherapy and GM-CSF, which was further boosted by PD-1 inhibitors.


Asunto(s)
Quimioradioterapia , Neoplasias Primarias Secundarias , Quimioradioterapia/efectos adversos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Primarias Secundarias/terapia , Terapia Recuperativa , Resultado del Tratamiento , Microambiente Tumoral
14.
Angew Chem Int Ed Engl ; 61(18): e202116534, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35174939

RESUMEN

The performance enhancement of inverted perovskite solar cells applying nickel oxide (NiOx ) as the hole transport layer (HTL) has been limited by impurity ions (such as nitrate ions). Herein, we have proposed a strategy to obtain high-quality NiOx nanoparticles via an ionic liquid-assisted synthesis method (NiOx -IL). Experimental and theoretical results illustrate that the cation of the ionic liquid can inhibit the adsorption of impurity ions on nickel hydroxide through a strong hydrogen bond and low adsorption energy, thereby obtaining NiOx -IL HTL with high conductivity and strong hole-extraction ability. Importantly, the removal of impurity ions can effectively suppress the redox reaction between the NiOx film and the perovskite film, thus slowing down the deterioration of device performance. Consequently, the modified inverted device shows a striking efficiency exceeding 22.62 %, and superior stability maintaining 92 % efficiency at a maximum power point tracking under one sun illumination for 1000 h.

15.
Front Microbiol ; 13: 1078663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36643413

RESUMEN

Introduction: Morchella has become a research hotspot because of its wide distribution, delicious taste, and phenotypic plasticity. The Qinghai-Tibet Plateau subkingdoms (QTPs) are known as the cradle of Ice age biodiversity. However, the diversity of Morchella in the QTPs has been poorly investigated, especially in phylogenetic diversity, origin, and biogeography. Methods: The genealogical concordance phylogenetic species recognition (GCPSR, based on Bayesian evolutionary analysis using sequences from the internal transcribed spacer (ITS), nuclear large subunit rDNA (nrLSU), translation elongation factor 1-α (EF1-α), and the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2)), differentiation time estimation, and ancestral region reconstruction were used to infer Morchella's phylogenetic relationships and historical biogeography in the QTPs. Results: Firstly, a total of 18 Morchella phylogenetic species are recognized in the QTPs, including 10 Elata clades and 8 Esculenta clades of 216 individuals Secondly, the divergences of the 18 phylogenetic species were 50.24-4.20 Mya (Eocene-Pliocene), which was closely related to the geological activities in the QTPs. Furthermore, the ancestor of Morchella probably originated in the Northern regions (Qilian Shan, Elata cade) and southwestern regions (Shangri-La, Esculenta clade) of QTPs and might have migrated from North America (Rufobrunnea clade) via Beringian Land Bridge (BLB) and Long-Distance Dispersal (LDD) expansions during the Late Cretaceous. Moreover, as the cradle of species origin and diversity, the fungi species in the QTPs have spread out and diffused to Eurasia and South Africa starting in the Paleogene Period. Conclusion: This is the first report that Esculenta and Elata clade of Morchella originated from the QTPs because of orogenic, and rapid differentiation of fungi is strongly linked to geological uplift movement and refuge in marginal areas of the QTPs. Our findings contribute to increasing the diversity of Morchella and offer more evidence for the origin theory of the QTPs.

17.
Sci Adv ; 7(28)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34233877

RESUMEN

Stabilizing high-efficiency perovskite solar cells (PSCs) at operating conditions remains an unresolved issue hampering its large-scale commercial deployment. Here, we report a star-shaped polymer to improve charge transport and inhibit ion migration at the perovskite interface. The incorporation of multiple chemical anchor sites in the star-shaped polymer branches strongly controls the crystallization of perovskite film with lower trap density and higher carrier mobility and thus inhibits the nonradiative recombination and reduces the charge-transport loss. Consequently, the modified inverted PSCs show an optimal power conversion efficiency of 22.1% and a very high fill factor (FF) of 0.862, corresponding to 95.4% of the Shockley-Queisser limited FF (0.904) of PSCs with a 1.59-eV bandgap. The modified devices exhibit excellent long-term operational and thermal stability at the maximum power point for 1000 hours at 45°C under continuous one-sun illumination without any significant loss of efficiency.

18.
Front Pharmacol ; 12: 675470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122101

RESUMEN

Total flavonoids of Rhizoma drynariae (TFRD), a Chinese medicine, is widely used in the treatment of fracture, bone defect, osteoporosis and other orthopedic diseases, and has achieved good effects. Purpose of this trial was to explore efficacy of TFRD on bone graft's mineralization and osteoblasts' differentiation in Masquelet induced membrane technique in rats. Forty male Sprague-Dawley rats were randomly divided into high dose group (H-TFRD), middle dose group (M-TFRD), low dose group (L-TFRD) and control group (control). The critical size bone defect model of rats was established with 10 rats in each group. Polymethyl methacrylate (PMMA) spacer was implanted into the defect of right femur in rats. After the formation of the induced membrane, autogenous bone was implanted into the induced membrane. After 12 weeks of bone graft, bone tissues in the area of bone graft were examined by X-ray, Micro-CT, hematoxylin-eosin (HE) and Masson trichrome staining to evaluate the growth of the bone graft. The ß-catenin, c-myc, COL1A1, BMP-2 and OPN in bone graft were quantitatively analyzed by Western blot and Immunohistostaining. Osteoblasts were cultured in the medium containing TFRD. Cell Counting Kit-8 (CCK-8) method, Alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining, Western blot, RT-PCR and other methods were used to detect the effects of TFRD on the proliferation of osteoblasts and the regulation of Wnt/ß-catenin signaling pathway. In vivo experiments showed that the growth and mineralization of bone graft in TFRD group was better. Moreover, the expression of Wnt/ß-catenin and osteogenesis-related proteins in bone tissue of TFRD group was more than that in other groups. In vitro experiments indicated that osteoblasts proliferated faster, activity of ALP was higher, number of mineralized nodules and proteins related to osteogenesis were more in TFRD group. But blocking Wnt/ß-catenin signaling pathway could limit these effects. Therefore, TFRD could promote mineralization of bone graft and differentiation of osteoblasts in a dose-dependent manner during growing period of the bone graft of induced membrane technique, which is partly related to the activation of Wnt/ß-catenin signaling pathway.

19.
J Phys Chem Lett ; 12(20): 4993-4999, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34015923

RESUMEN

Van der Waals (vdW) screening or Faraday-cage-like screening of vdW interaction by monolayer crystals has recently been observed in experiments and understood from first-principles theories. Here, we investigate the vdW screening by a bulky dielectric layer using the Lifshitz theory. The ratio of vdW screening is found to depend on not only the interobject distance but also the thicknesses of the separated layers. Surprisingly, the screening ratio exhibits a nonmonotonous distance dependence, first increasing, but beyond a critical distance reducing, toward zero. The short-range trend coincides with that predicted for graphene-like trilayers by the random phase approximation, while the long-range trend poses a contrast to the increasing screening with distance by graphene predicted by the many-body dispersion approach. The positive correlation between the screening ratio and the dielectric constant revealed for atomistic layers is reproduced for the bulky dielectric layers.

20.
Nanoscale ; 12(23): 12639-12646, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32514503

RESUMEN

An exceptionally large excitonic effect on the van der Waals (vdW) interaction between two-dimensional semiconductors is unraveled using the Lifshitz theory in conjunction with the ab initio GW plus Bethe-Salpeter equation formalism. Upon consideration of the electron-hole interaction, the vdW energy between two atomistic layers separated by 10 000 angstroms can be larger by a ratio of ∼30%, which is an order of magnitude greater than that seen for semi-infinite silicon surfaces. The large influence of the short-range electron-hole interaction on the long-range effect of quantum fluctuations is rooted in the ultra-thin nature of two-dimensional semiconductors which results in not only large exciton binding energy but also amplified roles of low-frequency dielectric responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA