Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 191: 108969, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39180774

RESUMEN

Emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) pose potential health risks to humans through dietary exposure. However, research into their mechanisms of toxicity is limited, with a lack of comprehensive toxicological data. This study investigates from a hepatic lipid metabolism perspective, establishing a more precise and reliable 3D HepaRG hepatocyte spheroid model as an alternative for toxicity assessment. Utilizing physiological indices, histopathological analyses, lipidomics, and molecular docking techniques, it comprehensively elucidates the effects of ENNs and BEA on hepatic lipid homeostasis and their molecular toxicological mechanisms. Our findings indicate that ENNs and BEA impact cellular viability and biochemical functions, significantly altering lipid metabolism pathways, particularly those involving glycerophospholipids and sphingolipids. Molecular docking has demonstrated strong binding affinity of ENNs and BEA with key enzymes in lipid metabolism such as Peroxisome Proliferator-Activated Receptor α (PPARα) and Cytosolic Phospholipase A2 (cPLA2), revealing the mechanistic basis for their hepatotoxic effects and potential to impair liver function and human health. These insights enhance our understanding of the potential hepatotoxicity of such fungal toxins and lay a foundation for the assessment of their health risks.

2.
Microb Cell Fact ; 23(1): 212, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061053

RESUMEN

Being generally regarded as safe, Kluyveromyces lactis has been widely taken for food, feed, and pharmaceutical applications, owing to its ability to achieve high levels of protein secretion and hence being suitable for industrial production of heterologous proteins. Production platform strains can be created through genetic engineering; while prototrophic cells without chromosomally accumulated antibiotics resistance genes have been generally preferred, arising the need for dominant counterselection. We report here the establishment of a convenient counterselection system based on a Frs2 variant, Frs2v, which is a mutant of the alpha-subunit of phenylalanyl-tRNA synthase capable of preferentially incorporating a toxic analog of phenylalanine, r-chloro-phenylalanine (4-CP), into proteins to bring about cell growth inhibition. We demonstrated that expression of Frs2v from an episomal plasmid in K. lactis could make the host cells sensitive to 2 mM 4-CP, and a Frs2v-expressing plasmid could be efficiently removed from the cells immediately after a single round of cell culturing in a 4-CP-contianing YPD medium. This Frs2v-based counterselection helped us attain scarless gene replacement in K. lactis without any prior engineering of the host cells. More importantly, counterselection with this system was proven to be functionally efficient also in Saccharomyces cerevisiae and Komagataella phaffii, suggestive of a broader application scope of the system in various yeast hosts. Collectively, this work has developed a strategy to enable rapid, convenient, and high-efficiency construction of prototrophic strains of K. lactis and possibly many other yeast species, and provided an important reference for establishing similar methods in other industrially important eukaryotic microbes.


Asunto(s)
Kluyveromyces , Plásmidos , Kluyveromyces/genética , Kluyveromyces/metabolismo , Plásmidos/genética , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Ingeniería Genética/métodos , Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675714

RESUMEN

Xylanase is an essential component used to hydrolyze the xylan in wheat flour to enhance the quality of bread. Presently, cold-activated xylanase is popularly utilized to aid in the development of dough. In this study, ancestral sequence reconstruction and molecular docking of xylanase and wheat xylan were used to enhance the activity and stability of a thermophilic xylanase. The results indicated that the ancestral enzyme TmxN3 exhibited significantly improved activity and thermal stability. The Vmax increased by 2.7 times, and the catalytic efficiency (Kcat/Km) increased by 1.7 times in comparison to TmxB. After being incubated at 100 °C for 120 min, it still retained 87.3% of its activity, and the half-life in 100 °C was 330 min, while the wild type xylanase was only 55 min. This resulted in an improved shelf life of bread, while adding TmxN3 considerably enhanced its quality with excellent volume and reduced hardness, chewiness, and gumminess. The results showed that the hardness was reduced by 55.2%, the chewiness was reduced by 40.11%, and the gumminess was reduced by 53.52%. To facilitate its industrial application, we further optimized the production conditions in a 5L bioreactor, and the xylanase activity reached 1.52 × 106 U/mL culture.


Asunto(s)
Pan , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Harina , Simulación del Acoplamiento Molecular , Triticum , Pan/análisis , Harina/análisis , Triticum/química , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo
4.
BMC Plant Biol ; 24(1): 162, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429726

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) is a novel signaling molecule involved in the growth and development of plants and their response to stress. However, the involvement of H2S in promoting the growth and development of tobacco plants is still unclear. RESULTS: In this study, we explored the effect of pre-soaking or irrigating the roots of tobacco plants with 0.0, 2.0, 4.0, 6.0, and 8.0 mM of sodium hydrosulfide (NaHS) on endogenous H2S production, antioxidant enzymatic and cysteine desulfhydrase activities, seed germination, agronomic traits, photosynthetic pigments contents, and root vigor. The results revealed that exogenous NaHS treatment could significantly promote endogenous H2S production by inducing gene expression of D/L-CD and the activities of D/L-CD enzymes. Additionally, a significant increase in the agronomic traits and the contents of photosynthetic pigments, and no significant difference in carotenoid content among tobacco plants treated with 0.0 to 8.0 mM of NaHS was observed. Additionally, a significant increase in the germination speed, dry weight, and vigor of tobacco seeds, whereas no significant effect on the percentage of seed germination was observed on NaHS treatment. Furthermore, NaHS treatment could significantly increase the activity of superoxide dismutase (SOD) and peroxidase (POD) enzymes, which reduces damage due to oxidative stress by maintaining reactive oxygen species homeostasis. CONCLUSIONS: These results would aid in enhancing our understanding of the involvement of H2S, a novel signaling molecule to promote the growth and development of tobacco plants.


Asunto(s)
Sulfuro de Hidrógeno , Plantones , Nicotiana , Germinación , Agricultura
5.
Front Microbiol ; 14: 1261245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143856

RESUMEN

Amino acids along the conformational motion pathway of the enzyme molecule correlated to its flexibility and rigidity. To enhance the enzyme activity and thermal stability, the motion pathway of Geobacillus stearothermophilus α-amylase has been identified and molecularly modified by using the neural relational inference model and deep learning tool. The significant differences in substrate specificity, enzymatic kinetics, optimal temperature, and thermal stability were observed among the mutants with modified amino acids along the pathway. Mutants especially the P44E demonstrated enhanced hydrolytic activity and catalytic efficiency (kcat/KM) than the wild-type enzyme to 95.0% and 93.8% respectively, with the optimum temperature increased to 90°C. This mutation from proline to glutamic acid has increased the number and the radius of the bottleneck of the channels, which might facilitate transporting large starch substrates into the enzyme. The mutation could also optimize the hydrogen bonding network of the catalytic center, and diminish the spatial hindering to the substrate entry and exit from the catalytic center.

6.
Microb Cell Fact ; 22(1): 208, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833755

RESUMEN

BACKGROUND: Zymomonas mobilis is an important industrial bacterium ideal for biorefinery and synthetic biology studies. High-throughput CRISPR-based genome editing technologies have been developed to enable targeted engineering of genes and hence metabolic pathways in the model ZM4 strain, expediting the exploitation of this biofuel-producing strain as a cell factory for sustainable chemicals, proteins and biofuels production. As these technologies mainly take plasmid-based strategies, their applications would be impeded due to the fact that curing of the extremely stable plasmids is laborious and inefficient. Whilst counterselection markers have been proven to be efficient for plasmid curing, hitherto only very few counterselection markers have been available for Z. mobilis. RESULTS: We constructed a conditional lethal mutant of the pheS gene of Z. mobilis ZM4, clmPheS, containing T263A and A318G substitutions and coding for a mutated alpha-subunit of phenylalanyl-tRNA synthetase to allow for the incorporation of a toxic analog of phenylalanine, p-chloro-phenylalanine (4-CP), into proteins, and hence leading to inhibition of cell growth. We demonstrated that expression of clmPheS driven by a strong Pgap promoter from a plasmid could render the Z. mobilis ZM4 cells sufficient sensitivity to 4-CP. The clmPheS-expressing cells were assayed to be extremely sensitive to 0.2 mM 4-CP. Subsequently, the clmPheS-assisted counterselection endowed fast curing of genome engineering plasmids immediately after obtaining the desired mutants, shortening the time of every two rounds of multiplex chromosome editing by at least 9 days, and enabled the development of a strategy for scarless modification of the native Z. mobilis ZM4 plasmids. CONCLUSIONS: This study developed a strategy, coupling an endogenous CRISPR-based genome editing toolkit with a counterselection marker created here, for rapid and efficient multi-round multiplex editing of the chromosome, as well as scarless modification of the native plasmids, providing an improved genome engineering toolkit for Z. mobilis and an important reference to develope similar genetic manipulation systems in other non-model organisms.


Asunto(s)
Zymomonas , Zymomonas/metabolismo , Plásmidos/genética , Edición Génica , Fenilalanina/metabolismo
7.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446078

RESUMEN

Laccases are widely used in industrial production due to their broad substrate availability and environmentally friendly nature. However, the pursuit of laccases with superior stability and increased heterogeneous expression to meet industry demands appears to be an ongoing challenge. To address this challenge, we resurrected five ancestral sequences of laccase BsCotA and their homologues. All five variants were successfully expressed in soluble and functional forms with improved expression levels in Escherichia coli. Among the five variants, three exhibited higher catalytic rates, thermal stabilities, and acidic stabilities. Notably, AncCotA2, the best-performing variant, displayed a kcat/KM of 7.5 × 105 M-1·s-1, 5.2-fold higher than that of the wild-type BsCotA, an improved thermo- and acidic stability, and better dye decolorization ability. This study provides a laccase variant with high application potential and presents a new starting point for future enzyme engineering.


Asunto(s)
Proteínas Bacterianas , Lacasa , Lacasa/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Colorantes/química
8.
Molecules ; 28(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37299021

RESUMEN

Zearalenone (ZEN) is one of the most prevalent estrogenic mycotoxins, is produced mainly by the Fusarium family of fungi, and poses a risk to the health of animals. Zearalenone hydrolase (ZHD) is an important enzyme capable of degrading ZEN into a non-toxic compound. Although previous research has investigated the catalytic mechanism of ZHD, information on its dynamic interaction with ZEN remains unknown. This study aimed to develop a pipeline for identifying the allosteric pathway of ZHD. Using an identity analysis, we identified hub genes whose sequences can generalize a set of sequences in a protein family. We then utilized a neural relational inference (NRI) model to identify the allosteric pathway of the protein throughout the entire molecular dynamics simulation. The production run lasted 1 microsecond, and we analyzed residues 139-222 for the allosteric pathway using the NRI model. We found that the cap domain of the protein opened up during catalysis, resembling a hemostatic tape. We used umbrella sampling to simulate the dynamic docking phase of the ligand-protein complex and found that the protein took on a square sandwich shape. Our energy analysis, using both molecular mechanics/Poisson-Boltzmann (Generalized-Born) surface area (MMPBSA) and Potential Mean Force (PMF) analysis, showed discrepancies, with scores of -8.45 kcal/mol and -1.95 kcal/mol, respectively. MMPBSA, however, obtained a similar score to that of a previous report.


Asunto(s)
Micotoxinas , Zearalenona , Zearalenona/química , Hidrolasas/química , Simulación de Dinámica Molecular , Micotoxinas/metabolismo , Movimiento (Física)
9.
Protein Pept Lett ; 29(8): 692-701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35708079

RESUMEN

BACKGROUND: Mannans are the main components of hemicellulose in nature and serve as the major storage polysaccharide in legume seeds. To mine new mannanase genes and identify their functional characteristics are an important basis for mannan biotechnological applications. OBJECTIVE: In this study, a putative mannanase gene (ManBs31) from the genome of the marine bacterium Alteromonadaceae Bs31 was characterized. METHODS: Amino acid sequence analysis and protein structural modeling were used to reveal the molecular features of ManBs31. The catalytic domain of ManBs31 was recombinantly produced using Escherichia coli and Pichia pastoris expression systems. The biochemical properties of the enzymes were determined by reducing sugar assay and thin-layer chromatography. RESULTS: Sequence analysis revealed that ManBs31 was a multidomain protein, consisting of a catalytic domain belonging to glycoside hydrolase family 5 (GH5) and two cellulose-binding domains. Recombinant ManBs31-GH5 exhibited the maximum hydrolytic performance at 70 ºC and pH 6. It showed the best hydrolysis capacity toward konjac glucomannan (specific enzyme activity up to 1070.84 U/mg) and poor hydrolysis ability toward galactomannan with high side-chain modifications (with a specific activity of 344.97 U/mg and 93.84 U/mg to locust bean gum and ivory nut mannan, respectively). The hydrolysis products of ManBs31-GH5 were mannooligosaccharides, and no monosaccharide was generated. Structural analysis suggested that ManBs31-GH5 had a noncanonical +2 subsite compared with other GH5 mannanases. CONCLUSION: ManBs31 was a novel thermophilic endo-mannanase and it provided a new alternative for the biodegradation of mannans, especially for preparation of probiotic mannooligosaccharides.


Asunto(s)
Alteromonadaceae , Mananos , Mananos/química , Mananos/metabolismo , Alteromonadaceae/metabolismo , Secuencia de Aminoácidos , Especificidad por Sustrato , beta-Manosidasa/genética , beta-Manosidasa/química , Glicósido Hidrolasas , Hidrólisis , Escherichia coli/genética , Escherichia coli/metabolismo
10.
Appl Microbiol Biotechnol ; 106(5-6): 2017-2027, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35171339

RESUMEN

A hyperthermostable xylanase XYN10B from Thermotoga maritima (PDB code 1VBR, GenBank accession number KR078269) was subjected to site-directed and error-prone PCR mutagenesis. From the selected five mutants, the two site-directed mutants (F806H and F806V) showed a 3.3-3.5-fold improved enzyme half-life at 100 °C. The mutant XYNA generated by error-prone PCR showed slightly improved stability at 100 °C and a lower Km. In XYNB and XYNC, the additional mutations over XYNA decreased the thermostability and temperature optimum, while elevating the Km. In XYNC, two large side-chains were introduced into the protein's interior. Micro-differential scanning calorimetry (DSC) showed that the melting temperature (Tm) dropped in XYNB and XYNC from 104.9 °C to 93.7 °C and 78.6 °C, respectively. The detrimental mutations showed that extremely thermostable enzymes can tolerate quite radical mutations in the protein's interior and still retain high thermostability. The analysis of mutations (F806H and F806V) in a hydrophobic area lining the substrate-binding region indicated that active site hydrophobicity is important for high activity at extreme temperatures. Although polar His at 806 provided higher stability, the hydrophobic Phe at 806 provided higher activity than His. This study generates an understanding of how extreme thermostability and high activity are formed in GH10 xylanases. KEY POINTS: • Characterization and molecular dynamics simulations of TmXYN10B and its mutants • Explanation of structural stability of GH10 xylanase.


Asunto(s)
Endo-1,4-beta Xilanasas , Thermotoga maritima , Endo-1,4-beta Xilanasas/metabolismo , Estabilidad de Enzimas , Modelos Moleculares , Mutación , Temperatura , Thermotoga maritima/genética
11.
Prep Biochem Biotechnol ; 51(9): 881-891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33439094

RESUMEN

Mannanases catalyze the cleavage of ß-1,4-mannosidic linkages in mannans and have various applications in different biotechnological industries. In this study, a new ß-mannanase from Verrucomicrobiae DG1235 (ManDG1235) was biochemically characterized and its enzymatic properties were revealed. Amino acid alignment indicated that ManDG1235 belonged to glycoside hydrolase family 26 and shared a low amino acid sequence identity to reported ß-mannanases (up to 50% for CjMan26C from Cellvibrio japonicus). ManDG1235 was expressed in Escherichia coli. Purified ManDG1235 (rManDG1235) exhibited the typical properties of cold-active enzymes, including high activity at low temperature (optimal at 20 °C) and thermal instability. The maximum activity of rManDG1235 was achieved at pH 8, suggesting that it is a mildly alkaline ß-mannanase. rManDG1235 was able to hydrolyze a variety of mannan substrates and was active toward certain types of glucans. A structural model that was built by homology modeling suggested that ManDG1235 had four mannose-binding subsites which were symmetrically arranged in the active-site cleft. A long loop linking ß2 and α2 as in CjMan26C creates a steric border in the glycone region of active-site cleft which probably leads to the exo-acting feature of ManDG1235, for specifically cleaving mannobiose from the non-reducing end of the substrate.


Asunto(s)
Proteínas Bacterianas , Frío , Modelos Moleculares , Verrucomicrobia , beta-Manosidasa , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato , Verrucomicrobia/enzimología , Verrucomicrobia/genética , beta-Manosidasa/química , beta-Manosidasa/genética
12.
Enzyme Microb Technol ; 139: 109579, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32732029

RESUMEN

Endo-ß-1,4-xylanase from Thermotoga maritima, TmxB, is an industrially attractive enzyme due to its extreme thermostability. To improve its application value, four variants were designed on the basis of multiple sequence and three-dimensional structure alignments. Wild-type TmxB (wt-TmxB) and its mutants were produced via a Pichia pastoris expression system. Among four single-site mutants, the tyrosine substitution of a threonine residue (T74Y) at putative -3/-4 subsite led to a 1.3-fold increase in specific activity at 40 °C - 100 °C and pH 5 for 5 min, with beechwood xylan as the substrate. T74Y had an improved catalytic efficiency (kcat/Km), being 1.6 times that of wt-TmxB. Variants DY (two amino acid insertions) and N68Q displayed a slight increase (1.2 fold) and dramatic decline (1.7 fold) in catalytic efficiency, respectively. Mutant E67Y was totally inactive under all test conditions. Structural modeling and docking simulation elucidated structural insights into the molecular mechanism of activity changes for these TmxB variants. This study helps in further understanding the roles of the non-catalytic amino acids at the glycone subsites of xylanases from glycoside hydrolase family 10.


Asunto(s)
Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Mutagénesis Sitio-Dirigida , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Dominio Catalítico , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Modelos Estructurales , Simulación del Acoplamiento Molecular , Saccharomycetales/genética , Saccharomycetales/metabolismo , Especificidad por Sustrato
13.
Front Microbiol ; 10: 1507, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312196

RESUMEN

In this study, the first xylantic enzyme from the family Marinifilaceae, XynSPP2, was identified from Marinifilaceae bacterium strain SPP2. Amino acid sequence analysis revealed that XynSPP2 is a rare Fn3-fused xylanase, consisting of a signal peptide, a fibronectin type-III domain (Fn3), and a C-terminal catalytic domain belonging to glycoside hydrolase family 10 (GH10). The catalytic domain shared 17-46% identities to those of biochemically characterized GH10 xylanases. Structural analysis revealed that the conserved asparagine and glutamine at the glycone -2/-3 subsite of GH10 xylanases are substituted by a tryptophan and a serine, respectively, in XynSPP2. Full-length XynSPP2 and its Fn3-deleted variant (XynSPP2ΔFn3) were overexpressed in Escherichia coli and purified by Ni-affinity chromatography. The optimum temperature and pH for both recombinant enzymes were 50°C and 6, respectively. The enzymes were stable under alkaline condition and at temperature lower than 50°C. With beechwood xylan as the substrate, XynSPP2 showed 2.8 times the catalytic efficiency of XynSPP2ΔFn3, indicating that the Fn3 module promotes xylanase activity. XynSPP2 was active toward xylooligosaccharides (XOSs) longer than xylotriose. Such a substrate preference can be explained by the unique -2/-3 subsite composition in the enzyme which provides new insight into subsite interaction within the GH10 family. XynSPP2 hydrolyzed beechwood xylan into small XOSs (xylotriose and xylotetraose as major products). No monosaccharide was detected by thin-layer chromatography which may be ascribed to putative transxylosylation activity of XynSPP2. Preferring long XOS substrate and lack of monosaccharide production suggest its potential in probiotic XOS manufacture.

14.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052274

RESUMEN

Cellulophaga algicola DSM 14237, isolated from the Eastern Antarctic coastal zone, was found to be able to hydrolyze several types of polysaccharide materials. In this study, a predicted ß-agarase (CaAga1) from C. algicola was heterologously expressed in Escherichia coli. The purified recombinant CaAga1 showed specific activities of 29.39, 20.20, 14.12, and 8.99 U/mg toward agarose, pure agar, and crude agars from Gracilaria lemaneiformis and Porphyra haitanensis, respectively. CaAga1 exhibited an optimal temperature and pH of 40 oC and 7, respectively. CaAga1 was stable over a wide pH range from 4 to 11. The recombinant enzyme showed an unusual thermostability, that is, it was stable at temperature below or equal to 40oC and around 70 oC, but was thermolabile at about 50 oC. With the agarose as the substrate, the Km and Vmax values for CaAga1 were 1.19 mg/mL and 36.21 U/mg, respectively. The reducing reagent (dithiothreitol) enhanced the activity of CaAga1 by more than one fold. In addition, CaAga1 was salt-tolerant given that it retained approximately 70% of the maximum activity in the presence of 2 M NaCl. The thin layer chromatography results indicated that CaAga1 is an endo-type ß-agarase and efficiently hydrolyzed agarose into neoagarotetraose (NA4) and neoagarohexaose (NA6). A structural model of CaAga1 in complex with neoagarooctaose (NA8) was built by homology modeling and explained the hydrolysis pattern of CaAga1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavobacteriaceae/enzimología , Glicósido Hidrolasas/metabolismo , Proteínas Bacterianas/química , Dominio Catalítico , Estabilidad de Enzimas , Glicósido Hidrolasas/química , Unión Proteica , Especificidad por Sustrato
15.
World J Microbiol Biotechnol ; 35(6): 84, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31134444

RESUMEN

Pectin is a type of complex hydrophilic polysaccharide widely distributed in plant resources. Thermal stable pectinase has its advantage in bioapplication in the fields of food processing, brewing, and papermaking, etc. In this study, we enzymatically characterized a putative endo-polygalacturonase TcPG from a Talaromyces cellulolyticus, realized its high-level expression in Pichia pastoris by in vitro constructing of a series of multi-copy expression cassettes and real time quantitative PCR screening. The secretive expression level of TcPG was nonlinear correlated to the gene dosage. Recombinants with five-copy TcPG gene in the host genome showed the highest expression. After cultivation in a bioreactor for about 96 h, the enzyme activity reached 7124.8 U/mL culture. TcPG has its optimal temperature of 70 °C. Under the optimized parameters, the pectin could be efficiently hydrolyzed into oligosaccharides.


Asunto(s)
Dosificación de Gen , Pectinas/metabolismo , Pichia/genética , Poligalacturonasa/biosíntesis , Poligalacturonasa/genética , Talaromyces/enzimología , Talaromyces/genética , Reactores Biológicos , Clonación Molecular , Regulación Fúngica de la Expresión Génica , Hidrólisis , Pichia/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Proteínas Recombinantes/genética , Temperatura , Factores de Tiempo
16.
Protein Expr Purif ; 153: 83-91, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107237

RESUMEN

The α-galactosidases, which can catalyze the removal of α-1,6-linked terminal galactose residues from galactooligosaccharide materials, have good potential for industrial applications. The high-level and efficient secretion of the α-galactosidases into the extracellular space has greatly simplified the downstream bioengineering process, facilitating their bioapplications. In this study, the effects of gene dosage and endoplasmic reticulum secretion-associated factors (ERSAs) on the secretory expression of an α-galactosidase gene derived from a Aspergillus oryzae strain were investigated by constructing multicopy expression cassettes and coexpressing the α-galactosidase gene with ERSAs. With the increase in the gene copy-number in the host genome, the expression of GalA was improved. However, the secretory expression level was not linearly related to the copy number. When the number was higher than four copies, the expression level of GalA gene declined. The ERSAs factors HAC1, PDI, and Ero1 improved the secretory expression of α-galactosidase, while Hsp40 inhibited its secretion. After methanol-induced expression in a bench-top bioreactor, Pichia recombinants carrying four copies of GalA genes reached 3520 U/mL in the supernatant of the culture. We further optimized the parameters for α-galactosidase to hydrolyze two types of galactooligosaccharides: raffinose and stachyose. This study has fulfilled the scale-up production of α-galactosidase, thus facilitating its industrial applications.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Retículo Endoplásmico/química , Proteínas Fúngicas/genética , Glicoproteínas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Proteína Disulfuro Isomerasas/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , alfa-Galactosidasa/genética , Aspergillus oryzae/química , Aspergillus oryzae/enzimología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Clonación Molecular , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Dosificación de Gen , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicoproteínas/metabolismo , Humanos , Hidrólisis , Microbiología Industrial/métodos , Oligosacáridos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Pichia/genética , Pichia/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Rafinosa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Galactosidasa/metabolismo
17.
ACS Synth Biol ; 7(12): 2709-2714, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30525473

RESUMEN

The 5' untranslated region (5'UTR) plays a key role in post-transcriptional regulation, but interaction between nucleotides and directed evolution of 5'UTRs as synthetic regulatory elements remain unclear. By constructing a library of synthesized random 5'UTRs of 24 nucleotides in Saccharomyces cerevisiae, we observed strong epistatic interactions among bases from different positions in the 5'UTR. Taking into account these base interactions, we constructed a mathematical model to predict protein abundance with a precision of R2 = 0.60. On the basis of this model, we developed an approach to engineer 5'UTRs according to nucleotide sequence activity relationships (NuSAR), in which 5'UTRs were engineered stepwise through repeated cycles of backbone design, directed screening, and model reconstruction. After three rounds of NuSAR, the predictive accuracy of our model was improved to R2 = 0.71, and a strong 5'UTR was obtained with 5-fold higher protein abundance than the starting 5'UTR. Our findings provide new insights into the mechanism of 5'UTR regulation and  contribute to a new translational elements engineering approach in synthetic biology.


Asunto(s)
Ingeniería Genética/métodos , Oligonucleótidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 5' , Secuencia de Bases , Evolución Molecular Dirigida , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Teóricos , Oligonucleótidos/genética , Plásmidos/genética , Plásmidos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética
18.
PLoS One ; 13(9): e0203919, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30252862

RESUMEN

The largely semi-deserted and deserted Dzungharian Basin sites in the northwest of China geologically represent an extension of the Paleozoic Kazakhstan Block and were once part of an independent continent. For reasons of overdevelopment and unreasonable operations during the process of exploitation and transportation, oil pollutants that were discharged into the soil environment caused serious pollution in this weak ecosystem. To explore the bacterial community composition in detail and their possible origination and potential during the natural attenuation of petroleum contaminants in this type of ecologic niche, GC-MS and high-throughput sequencing techniques were used to resolve the organic compounds and bacterial communities in vertical soil layers. The degradation of petroleum contaminants in semi-deserted and deserted soils mainly occurred in the layer at a depth of 45-55 cm. During this process, aromatic and heterocyclic compounds were significantly enriched in soils. The bacterial communities in this basin exhibited a distinct vertical stratification from the surface layer down to the bottom soil layer. Considering the interaction between the community composition and the geochemical properties, we speculate that the degradation of petroleum contaminants in this semi-deserted and deserted soil might represent a microorganism-mediated process and mainly occur in the deeper soil layer.


Asunto(s)
Contaminación Ambiental/análisis , Contaminación por Petróleo/análisis , Petróleo/análisis , Microbiología del Suelo , Bacterias/genética , China , Contaminación Ambiental/efectos adversos , Cromatografía de Gases y Espectrometría de Masas , Secuenciación de Nucleótidos de Alto Rendimiento , Petróleo/microbiología , Polimorfismo de Longitud del Fragmento de Restricción/genética , ARN Ribosómico 16S/genética
19.
Biomolecules ; 8(3)2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061529

RESUMEN

Glycoside hydrolase family 10 (GH10) xylanases are responsible for enzymatic cleavage of the internal glycosidic linkages of the xylan backbone, to generate xylooligosaccharides (XOS) and xyloses. The topologies of active-site cleft determine the substrate preferences and product profiles of xylanases. In this study, positional bindings and substrate interactions of TmxB, one of the most thermostable xylanases characterized from Thermotoga maritima to date, was investigated by docking simulations. XOS with backbone lengths of two to five (X2⁻X5) were docked into the active-site cleft of TmxB by AutoDock The modeled complex structures provided a series of snapshots of the interactions between XOS and TmxB. Changes in binding energy with the length of the XOS backbone indicated the existence of four effective subsites in TmxB. The interaction patterns at subsites -2 to +1 in TmxB were conserved among GH10 xylanases whereas those at distal aglycone subsite +2, consisting of the hydrogen bond network, was unique for TmxB. This work helps in obtaining an in-depth understanding of the substrate-binding property of TmxB and provides a basis for rational design of mutants with desired product profiles.


Asunto(s)
Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Simulación del Acoplamiento Molecular , Temperatura , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Estabilidad de Enzimas , Glucuronatos/metabolismo , Oligosacáridos/metabolismo , Unión Proteica , Especificidad por Sustrato
20.
World J Microbiol Biotechnol ; 34(8): 123, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054735

RESUMEN

Biotechnological application of xylanolytic enzymes is normally hindered by their temperature-dependent catalytic property. To satisfy the industrial demands, xylanases that can perform catalysis under cold condition are attracting attention. In this study, the biochemical properties of a predicted xylanase (laXynA) encoded in the genome of marine bacterium Luteimonas abyssi XH031T were characterized. Structure modeling and structure-based sequence alignment indicated that laXynA belongs to the glycoside hydrolase family 10, and it is 20-26% identical to other characterized cold-active xylanases in the same family. Recombinant laXynA was successfully produced in Escherichia coli system by autoinduction and purified by Ni-affinity chromatography. The isolated enzyme showed an optimum temperature of 30 °C toward beechwood xylan and retained important percentage of optimal activity at low temperatures (64, 55, and 29% at 10, 5, and 0 °C, respectively). A remarkable characteristic of laXynA was extreme halophilicity as demonstrated by fourfold enhancement on xylanase activity at 0.5 M NaCl and by maintaining nearly 100% activity at 4 M NaCl. Thin layer chromatography analysis demonstrated that laXynA is an endo xylanase. This study is the first to report the over-expression and characterization of a cold-active xylanase from Luteimonas species. The enzymatic property revealed the cold-active nature of laXynA. The enzyme is a promising candidate in saline food processing application.


Asunto(s)
Frío , Xanthomonadaceae/enzimología , Xanthomonadaceae/genética , Xilosidasas/química , Xilosidasas/genética , Xilosidasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , ADN Bacteriano , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Pruebas de Enzimas , Estabilidad de Enzimas , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Concentración de Iones de Hidrógeno , Cinética , Metales , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Cloruro de Sodio , Xilosidasas/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA