Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Front Pharmacol ; 15: 1343755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720776

RESUMEN

Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.

2.
Talanta ; 274: 125999, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583327

RESUMEN

The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Entropía , Estructuras Metalorgánicas , MicroARNs , MicroARNs/sangre , MicroARNs/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , Estructuras Metalorgánicas/química , ADN/química , Límite de Detección , Electrodos , Sondas de ADN/química , Sondas de ADN/genética , Compuestos Ferrosos/química , Metalocenos/química
3.
Transl Cancer Res ; 13(1): 112-136, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38410234

RESUMEN

Background: Abnormal coagulation is a common feature of glioma. There is a strong correlation between coagulation and the complement system, named complement and coagulation cascades (CCC). However, the role of CCC genes in lower-grade glioma (LGG) remains unclear. This study aimed to investigate the role of CCC genes in LGG. Methods: In total, 5,628 differential expressed genes were identified between 498 LGG tissues from The Cancer Genome Atlas (TCGA) and 207 normal brain tissues from Genotype-Tissue Expression Project (GTEx). Among them, 20 overlapped CCC genes were identified as differentially expressed CCC genes. Then, comprehensive bioinformatics analysis was used to investigate the role of CCC genes in LGG; 271 LGG tissues from the Chinese Glioma Genome Atlas (CGGA) were used as the validation dataset. Cell Counting Kit-8 (CCK8) proliferation assay, colony formation assay, and wound healing assay were conducted to explore the anti-glioma effect of the sensitive drugs we predicted. Results: We constructed a risk signature consisting of six CCC genes, including F2R, SERPINA1, TFPI, C1QC, C2, and C3AR1. The CCC gene-based risk signature could accurately predict the prognosis of patients with LGG. In addition, we found that the JAK-STAT, NOD-like receptor, Notch, PI3K-Akt, and Rap1 signaling pathways might be activated and had crosstalk with CCC in the high-risk group. Our findings analyses demonstrated that samples in high- and low-risk groups had different immune landscapes. Moreover, patients in the high-risk group might have greater resistance to immunotherapy. We validated the accuracy of the risk signature in predicting immunotherapy response in two public immunotherapy cohorts, GSE135222 and GSE78220. By means of oncoPredict, MG-132, BMS-536924, PLX-4720, and AZD6482 were identified as potential sensitive drugs for high-risk patients, of which MG-132 was particularly recommended for high-risk patients. We performed in vitro experiments to explore the anti-glioma effect of MG-132, and the results demonstrated MG-132 could inhibit the proliferation and migration of glioma cells. Conclusions: Our findings show that CCC genes are associated with the prognosis and immune infiltration of LGG and provide possible immunotherapeutic and novel chemotherapeutic strategies for patients with LGG based on the risk signature.

4.
J Endocrinol ; 261(1)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285626

RESUMEN

Polycystic ovary syndrome (PCOS) is a common endocrinopathy occurring in reproductive-age women. Hyperandrogenism, polycystic ovaries, chronic anovulation, and metabolic aberrations are the common features in PCOS. Hormonal changes are causing pathological symptoms in women with PCOS. The various hormone alterations in PCOS have been demonstrated. Hormones, such as insulin, growth hormones (GH), ghrelin, LEAP-2, gonadotropin-releasing hormone (GnRH), insulin, the luteinizing hormone/follicle-stimulating hormone (LH/FSH) ratio, androgens, and estrogens, are all abnormal in PCOS women. These hormones are related to metabolic disorders, such as diabetes and insulin resistance, overweight and obesity, infertility, and disturbed menstrual cycle in PCOS patients. The pathological changes of these hormones, such as increased insulin, reduced GH, increased ghrelin, and leptin resistance, result in an increased prevalence of diabetes and obesity in PCOS women. A reduced GH, increased LEAP-2 levels, high LH basal, increased LH/FSH ratio, high androgens, and low estrogen are demonstrated in PCOS and linked to infertility. This narrative review aims to clarify the changes of hormone profiles, such as insulin, GH, LH, FSH, androgens, estrogen, progesterone, ghrelin, LEAP-2, asprosin, and subfatin, in PCOS, which may reveal novel targets for better diagnosis and treatment of PCOS.


Asunto(s)
Diabetes Mellitus , Infertilidad , Síndrome del Ovario Poliquístico , Femenino , Humanos , Ghrelina , Hormona Luteinizante , Hormona Folículo Estimulante , Andrógenos , Estrógenos , Insulina , Obesidad/complicaciones
5.
Clin Rheumatol ; 43(3): 939-947, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198113

RESUMEN

OBJECTIVE: To evaluate the potential impact of consistent use of similar treatments over a long period; it is essential to investigate the potential correlation between genetic variations that influence the expression or function of pharmacological targets for reducing lipid levels and the risk of developing rheumatoid arthritis. METHODS: We used variants in the following genes to conduct Mendelian randomization analyses: HMGCR (encoding the target for statins), PCSK9 (encoding the target for PCSK9 inhibitors, such as evolocumab and alirocumab), and NPC1L1 (encoding the target for ezetimibe). Data from lipid genetics consortia (173,082 sample size) were used to weight variations according to their correlations with low-density lipoprotein cholesterol (LDL-C). In two large datasets (total n = 19,562 cases, 501,655 controls). We conducted a meta-analysis of Mendelian randomization estimates, weighted by LDL-C levels, on the regional differences in the risk of rheumatoid arthritis using data from two large databases. RESULTS: We approached SMR and IVW-MR analyses to examine the relationship between target gene expression (including HMGCR, PCSK9, and NPC1L1) and LDL-C levels mediated by these genes with RA. The IVW-MR analysis revealed no significant association between genetically predicted LDL-C concentration and the risk of RA (OR = 0.88, 95% CI = 0.59-1.29; OR = 0.91, 95% CI = 0.67-1.23; OR = 0.81, 95% CI = 0.49-1.36; all p > 0.05). Similarly, our findings from the SMR approach provided no evidence to suggest that gene expression of HMGCR, PCSK9, and NPC1L1 was associated with the risk of RA (OR = 0.91, 95% CI = 0.79-1.05, p = 0.207; OR = 0.96, 95% CI = 0.85-1.09, p = 0.493). CONCLUSIONS: Our results do not provide evidence to support the hypothesis that reducing LDL-C levels with statins, alirocumab, or ezetimibe effectively prevents the risk of developing RA. However, our study provides valuable insights into the assessment of lipid-lowering agents in RA, which can enhance our understanding of the condition and assist in clinical practice by aiding in the determination and monitoring of RA status to clinical response.


Asunto(s)
Artritis Reumatoide , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Proproteína Convertasa 9/genética , LDL-Colesterol , Análisis de la Aleatorización Mendeliana , Ezetimiba/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Estudio de Asociación del Genoma Completo
6.
Emerg Microbes Infect ; 12(2): 2270081, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819147

RESUMEN

The persistence and clinical consequences of rabies virus (RABV) infection have prompted global efforts to develop a safe and effective vaccines against rabies. mRNA vaccines represent a promising option against emerging and re-emerging infectious diseases, gaining particular interest since the outbreak of COVID-19. Herein, we report the development of a highly efficacious rabies mRNA vaccine composed of sequence-modified mRNA encoding RABV glycoprotein (RABV-G) packaged in core-shell structured lipopolyplex (LPP) nanoparticles, named LPP-mRNA-G. The bilayer structure of LPP improves protection and delivery of RABV-G mRNA and allows gradual release of mRNA molecules as the polymer degrades. The unique core-shell structured nanoparticle of LPP-mRNA-G facilitates vaccine uptake and demonstrates a desirable biodistribution pattern with low liver targeting upon intramuscular immunization. Single administration of low-dose LPP-mRNA-G in mice elicited potent humoral immune response and provided complete protection against intracerebral challenge with lethal RABV. Similarly, single immunization of low-dose LPP-mRNA-G induced high levels of virus-neutralizing antibody titers in dogs. Collectively, our data demonstrate the potential of LPP-mRNA-G as a promising next-generation rabies vaccine used in human and companion animals.


Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Perros , Animales , Ratones , Humanos , Rabia/prevención & control , Inmunidad Humoral , Distribución Tisular , Anticuerpos Antivirales , Vacunas de ARNm , Virus de la Rabia/genética , Inmunización , ARN Mensajero/genética
7.
Chempluschem ; 88(11): e202300387, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37728035

RESUMEN

Colon cancer is emerging as one of the most common cancers worldwide, ranking in the top three in morbidity and mortality. Oral methotrexate (MTX) has been employed as a first-line treatment for various cancers, such as colon, breast, and lung cancer. However, the complexity and particularity of the gastrointestinal microenvironment and the limitations of MTX itself, including severe adverse effects and instability, are the main obstacles to the safe delivery of MTX to colon tumor sites. Herein, an innovative oral administrated anticancer therapeutic MTX@Am7CD/SDS NPs equipped with both pH and temperature sensitivity, which could effectively prevent MTX@Am7CD/SDS NPs from being degraded in the acidic environment mimicking the stomach and small intestine, thus harboring the potential to accumulate at the site of colon lesions and further release intestinal drug under mild conditions. In cellular assays, compared with free MTX, MTX@Am7CD/SDS NPs showed a favorable tumor inhibition effect on three tumor cell lines, as well as excellent cell uptake and apoptosis-inducing effect on SW480 cells. Therefore, this work provides a feasible solution for the safe use of MTX in the treatment of colon cancer and even other intestinal diseases.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Sistemas de Liberación de Medicamentos , Preparaciones de Acción Retardada , Neoplasias del Colon/tratamiento farmacológico , Microambiente Tumoral
8.
Langmuir ; 39(38): 13588-13598, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37703860

RESUMEN

Chemotherapy is one of the available cancer treatments which has been successfully employed to prolong the survival of cancer patients. However, it remains a major challenge to develop effective chemotherapeutic agents by reducing off-target toxicity, improving bioavailability, and effectively prolonging blood circulation. The pH profile of tumor cells is abnormal to that of normal cells, making it a potential breakthrough for designing effective chemotherapeutic drug agents. Here, the pH-activatable charge-reversal supramolecular nanocarriers, named MI7-ß-CD/SA NPs, were prepared through a simple and "green" constructive process. MI7-ß-CD/SA NPs possess both pH-induced charge-reversal and disassembly properties that were exploited to investigate the loading, delivery, and pH-responsive controlled release of the antitumor compound celastrol (CSL). CSL@MI7-ß-CD/SA NPs displayed low hemolysis, good biocompatibility, and targeted uptake. Furthermore, CSL@MI7-ß-CD/SA NPs exhibited superior apoptosis rates against SMMC-7721 cell lines compared with CSL, when CSL@MI7-ß-CD/SA NPs and CSL were administered at a mass concentration of 5.0 µg/mL, i.e., the CSL content in CSL@MI7-ß-CD/SA NPs was relatively lower than that of intact CSL. We expected that MI7-ß-CD/SA NPs featuring pH-triggered charge reversal could offer a promising controlled release strategy that would then facilitate the clinical conversion of antitumor drugs.


Asunto(s)
Apoptosis , Polímeros , Humanos , Preparaciones de Acción Retardada , Transporte Biológico , Concentración de Iones de Hidrógeno
9.
Mol Med Rep ; 28(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37594074

RESUMEN

Asthma associated with obesity is a chronic disease that poses a threat to health in children and results in severe wheezing, earlier airway remodeling and increased insensitivity to hormone therapy compared with those who only have asthma. Despite its clinical importance, knowledge on the underlying mechanisms of this disease is limited. The present study aimed to elucidate the pathogenesis of asthma associated with obesity using a murine model. A total of 30 female BALB/c mice were divided into three groups: Normal, mice with asthma and obese mice with asthma. Obese mice with asthma were fed a high­fat diet to induce obesity. Mice with asthma were sensitized and challenged with ovalbumin (OVA). Obese mice were subjected to OVA sensitization and challenge to develop asthma associated with obesity. Airway remodeling was observed in obese mice with asthma through HE and Masson staining. Proteomic and bioinformatics analyses were conducted on lung tissue from obese mice with asthma and normal mice. A total of 200 proteins were differentially expressed in obese mice with asthma compared with normal mice; of these, 53 and 47% were up­ and downregulated, respectively. Pathway analysis revealed that asthma associated with obesity primarily affected the 'lysosome', 'phagosome', and 'sphingolipid metabolism' pathways. Gene Set Enrichment Analysis demonstrated the presence of pyroptosis in obese asthmatic mice, along with significant increases in pyroptosis­-associated factors such as GSDMD and Caspase. High protein expression of orosomucoid­like 3 (ORMDL3), NOD­like receptor thermal protein domain associated protein 3 (NLRP3) and Gasdermin­D (GSDMD) was observed in obese mice with asthma. In vitro experiments using HBE cells infected with ORMDL3­overexpressing lentivirus demonstrated that the overexpression of ORMDL3 led to increased expression of NLRP3, GSDMD and cathepsin D (CTSD). These findings suggested that ORMDL3 may regulate pyroptosis and subsequent airway remodeling in asthma associated with obesity via the CTSD/NLRP3/GSDMD pathway.


Asunto(s)
Asma , Neumonía , Femenino , Animales , Ratones , Orosomucoide , Ratones Obesos , Piroptosis , Remodelación de las Vías Aéreas (Respiratorias) , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteómica , Asma/complicaciones , Neumonía/complicaciones , Proteínas de la Membrana/genética
10.
ACS Omega ; 8(28): 24831-24840, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483206

RESUMEN

Polycystic ovary syndrome (PCOS) is a complex gynecological endocrine and metabolic disease. Orlistat as a lipase inhibitor may improve the pathological characteristics of PCOS and is the sole antiobesity agent available in various countries. In this study, the PCOS rat models were established using letrozole and high-fat diet. Tandem Mass Tag labeling peptide coupled with liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the differentially expressed ovarian proteins (DEPs) in the PCOS and control rats for the effect of PCOS, and in the PCOS and orlistat-treated PCOS rats for the effect of orlistat in PCOS. The orlistat attenuated the body weight gain; decreased the levels of testosterone, luteinizing hormone, a ratio of luteinizing/follicle-stimulating hormones; increased the level of estradiol; and recovered the estrous cycle in PCOS rats. In addition, 795 and 119 DEPs were found in PCOS and orlistat-treated PCOS groups, respectively. Based on the Gene Ontology and Kyoto Encyclopedia of Gene and Genomes pathway analysis of DEPs, orlistat restored the disturbed metabolism of linoleic acid, arachidonic acid, galactose, and glycerolipids, and then improved the chronic inflammation in PCOS rats. This study analyzed the ovarian proteome of orlistat-treated PCOS rats and identified targeted proteins, which explored the pathogenesis of PCOS and the potential effects of orlistat in PCOS rats.

11.
Front Immunol ; 14: 1185570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465679

RESUMEN

Chronic neuroinflammation has been regarded as an important part of the pathological initiation of Alzheimer's disease (AD), which is associated with the regulation of microglial activation. Preventing microglial activation to inhibit neuroinflammation may become a potential target for the treatment of neurodegenerative diseases. Guizhi Fuling capsule (GZFL) has a strong repression on inflammatory responses. Here, the presenilin1/2 conditional double knockout (PS cDKO) mice, a well-established mouse model of AD, were divided into: WT mice (WT), WT mice+GZFL (WT+GZFL), PS cDKO mice (cDKO), and PS cDKO mice+GZFL (cDKO+GZFL). Mice in the WT+GZFL and cDKO+GZFL group were fed standard chow containing 2000 ppm GZFL for 90 days. After 60 days of GZFL treatment, mice were given to behavioral tests for 30 days in order to explore the effects of GZFL on cognitive and motor function. Then, mice were sacrificed for examining the effects of GZFL on inflammation. Furthermore, primary microglia were obtained from neonatal Sprague-Dawley rats and pretreated with or without GZFL (50 µg/ml) for 1 h in the absence or presence of lipopolysaccharide (LPS) (100 ng/ml) stimulation to speculate whether the underlying mechanism of GZFL's anti-inflammatory potential was closely associated with Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Our findings indicated that GZFL has the ability to alleviate memory deficits in PS cDKO mice, which attributes to the improvement of neuroinflammation by inhibiting microglial activation and the levels of pro-inflammatory mediators. In addition, GZFL could inverse the tau hyperphosphorylation and the lessened expression of synaptic proteins in hippocampus of PS cDKO mice. Furthermore, GZFL prevented LPS-induced neuroinflammatory responses in primary microglia by decreasing the levels of pro-inflammatory mediators. It is noteworthy that therapeutic effects of GZFL on memory impairment are depended on the inhibition of neuroinflammatory responses by the blockage of JAK2/STAT3 signaling pathway. Taken together, GZFL may be an effective compound Chinese medicine for the improvement and postponement of neurodegenerative progression in AD.


Asunto(s)
Enfermedad de Alzheimer , Wolfiporia , Ratas , Ratones , Animales , Ratones Noqueados , Microglía/metabolismo , Wolfiporia/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratas Sprague-Dawley , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Inflamación/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico
12.
J Ovarian Res ; 16(1): 109, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277785

RESUMEN

BACKGROUND: This study aimed to compare the characteristics of the gut microbiota and their metabolite profiles between polycystic ovary syndrome (PCOS) and orlistat-treated PCOS rats (ORL-PCOS), which could help to better understand the underlying mechanism of the effect of orlistat on PCOS. METHODS: PCOS rat models were established using letrozole combined with a high-fat diet. Ten rats were randomly selected as a PCOS control group (PCOS). The other three groups (n = 10/group) were additionally supplemented with different doses of orlistat (low, medium, high). Then, fecal samples of the PCOS and ORL-PCOS groups were analysed by 16S rRNA gene sequencing and untargeted metabolomics. Blood samples were collected to detect serum sex hormones and lipids. RESULTS: The results showed that orlistat attenuated the body weight gain, decreased the levels of T, LH, the LH/FSH ratio, TC, TG and LDL-C; increased the level of E2; and improved estrous cycle disorder in PCOS rats. The bacterial richness and diversity of the gut microbiota in the ORL-PCOS group were higher than those in the PCOS group. The ratio of Firmicutes to Bacteroidetes was decreased with orlistat treatment. Moreover, orlistat treatment led to a significant decrease in the relative abundance of Ruminococcaceae and Lactobacillaceae, and increases in the abundances of Muribaculaceae and Bacteroidaceae. Metabolic analysis identified 216 differential fecal metabolites in total and 6 enriched KEGG pathways between the two groups, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction and vitamin digestion and absorption. Steroid hormone biosynthesis was the pathway with the most significant enrichment. The correlations between the gut microbiota and differential metabolites were calculated, which may provide a basis for understanding the composition and function of microbial communities. CONCLUSIONS: Our data suggested that orlistat exerts a PCOS treatment effect, which may be mediated by modifying the structure and composition of the gut microbiota, as well as the metabolite profiles of PCOS rats.


Asunto(s)
Microbiota , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Síndrome del Ovario Poliquístico/metabolismo , Orlistat/uso terapéutico , Letrozol/uso terapéutico , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S/genética , Hormonas Esteroides Gonadales , Metabolómica , Esteroides/uso terapéutico
13.
Chempluschem ; 88(5): e202300069, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37132411

RESUMEN

Triptolide (TPL) has gained much attention as an antitumor compound with potential applications. However, TPL suffers from low bioavailability, severe toxic side effects, and limited targeted uptake by tumor cells, thus restricting the conversion of its clinical application. Here, a supramolecular nanovehicle, named TSCD/MCC NPs, featuring pH/AChE co-response was designed and prepared for loading, delivery, and targeted release of TPL. The cumulative release rate of TPL from TPL@TSCD/MCC NPs reached ∼90 % within 60 h at pH 5.0 and AChE co-stimulation. Bhaskar model is used to study TPL release procedure. In cell experiments, TPL@TSCD/MCC NPs showed high toxicity to the four tumor cells lines A549, HL-60, MCF-7, and SW480, and favorable biosafety to normal cells BEAS-2B. Furthermore, TPL@TSCD/MCC NPs containing relatively small amounts of TPL presented similar apoptosis rates to those of intrinsic TPL. We anticipate that TPL@TSCD/MCC NPs may facilitate the conversion of TPL into clinical applications through further studies.


Asunto(s)
Apoptosis , Línea Celular Tumoral , Concentración de Iones de Hidrógeno
14.
RSC Adv ; 13(16): 11160-11170, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37056973

RESUMEN

Chemotherapy is recognized as one of the significant treatment methods for liver cancer. The compound celastrol (CSL) could effectively inhibit the proliferation, migration, and invasion of liver cancer cells, which is regarded as a promising candidate to become a mainstream anti-liver cancer drug. However, the application of CSL in liver cancer chemotherapy is limited due to its systemic toxicity, poor water solubility, multidrug resistance, premature degradation, and lack of tumor targeting. Meanwhile, in order to comply with the current concept of precision medicine, precisely targeted delivery of the anti-liver compound CSL was desired. This paper takes into account that liver cancer cells were equipped with hyaluronic acid (HA) receptors (CD44) on their surface and overexpressed. Hyaluronidase (HAase) capable of degrading HA, HAase-responsive nanocarriers (NCs), named HA/(MI)7-ß-CD NCs, were prepared based on the electrostatic interaction between HA and imidazole moieties modified ß-cyclodextrin (MI)7-ß-CD. HA/(MI)7-ß-CD NCs showed disassembly properties under HAase stimuli, which was utilized to trap, deliver, and the controllable release of the anti-liver cancer compound CSL. Furthermore, cytotoxicity assay experiments revealed that CSL-trapped HA/(MI)7-ß-CD NCs not only reduced cytotoxicity for normal cells but also effectively inhibited the survival for five tumor cells, and even the apoptotic effect of CSL-trapped NCs with a concentration of 5 µg mL-1 on tumor cells (SMMC-7721) was consistent with free CSL. Cell uptake experiments demonstrated HA/(MI)7-ß-CD NCs possessed the capability of targeted drug delivery to cancerous cells. HA/(MI)7-ß-CD NCs exhibited site-specific and controllable release performance, which is anticipated to proceed further in precision-targeted drug delivery systems.

15.
Children (Basel) ; 10(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832482

RESUMEN

Although research supports the feasibility and reliability of health-related physical fitness (HRPF) tests in typically developing children and adolescents, little is known regarding the feasibility and reliability of these tests for those with hearing impairments (HI). The aim of this study was to evaluate the feasibility and reliability of a HRPF test battery for children and adolescents with HI. A test-retest design with a one-week interval was conducted with 26 participants with HI (mean age: 12.7 ± 2.8 years; 9 male). The feasibility and reliability of seven field-based HRPF tests (i.e., body mass index, grip strength, standing long jump, vital capacity, long distance run, sit-and-reach, one leg stand) were evaluated. All the tests showed high feasibility (completion rate > 90%). Six tests indicated good to excellent test-retest reliability (all intraclass correlation coefficient [ICC] > 0.75) while the one leg stand test showed poor reliability (ICC = 0.36). Relatively large percentages of standard error of measurement (SEM%) and minimal detectable change (MDC%) were observed in the sit-and-reach test (SEM% = 52.4%, MDC% = 145.2%) and one leg stand test (SEM% = 107.9%, MDC% = 299.2%), whereas the rest of the tests demonstrated reasonable SEM% and MDC% values. Collectively, most of the tests can be feasibly and reliably used to assess HRPF for children and adolescents with HI.

16.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6217-6226, 2022 Nov.
Artículo en Chino | MEDLINE | ID: mdl-36471948

RESUMEN

To investigated the mechanisms underlying the effects of modified Kaixin San(MKXS) on improving memory and synaptic damage of Alzheimer's disease(AD) mouse model with conditional presenilin 1/2 conditional double knockout(PS cDKO). Specifically, 60 PS cDKO mice(3-3.5 months old) and their age-matched wild-type(WT) littermates were randomized into three groups: WT group(n=20), PS cDKO group(n=20), and PS cDKO+MKXS group(n=20). Mice in WT and PS cDKO groups were fed with standard chow and those in PS cDKO+MKXS group were given chow containing MKXS(at 2.55 g·kg~(-1)) for 60 days. Novel object reco-gnition task was employed to detect the recognition memory of mice, and Western blot to detect the protein levels of synapse-associated proteins in the hippocampus(HPC) of mice, such as NR1, NR2 A, NR2 B, p-αCaMKⅡ, tau, and p-tau. Microglial morphology in the HPC CA1 of mice was observed based on immunohistochemistry. Quantitative real time-PCR(qRT-PCR) was employed to detect the mRNA levels of the pro-inflammatory factors and synapse-associated proteins in the HPC of mice, including COX-2, iNOS, IL-1ß, IL-6, TNF-α, PSD95, NR1, NR2 A, NR2 B, and MAP2. The protein levels of IL-1ß, TNF-α, and IL-6 were tested by enzyme-linked immunosorbent assay(ELISA). The interaction between PSD95 and αCaMKⅡ and between PSD95 and p-αCaMKⅡ was tested by co-immunoprecipitation(Co-IP). The results showed that PS cDKO+MKXS demonstrated significantly higher preference index and recognition index of the new objects, lower protein level of p-tau(ser 396/404) and mRNA levels of COX-2, iNOS, TNF-α, IL-1ß, and IL-6 in HPC, higher protein levels of NR1, NR2 A, NR2 B, and p-αCaMKⅡ and mRNA levels of NR1, NR2 A, NR2 B, PSD95, and MAP2, and stronger interaction of αCaMKⅡ with PSD95 and interaction of p-αCaMKⅡ with PSD95 than the PS cDKO group. Immunohistoche-mical staining showed that MKXS inhibited the activation of microglia. In conclusion, MKXS improves memory and synaptic damage in mice with AD by modulating αCaMKⅡ-PSD95 protein binding through inhibition of neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Interleucina-6/metabolismo , Unión Proteica , Ratones Noqueados , Hipocampo/metabolismo , Modelos Animales de Enfermedad , ARN Mensajero/metabolismo
17.
Mikrochim Acta ; 189(12): 444, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367605

RESUMEN

A sensitive and portable biosensor is proposed for simple detection of microRNAs based on a supersandwich hybridization signal amplification strategy and a glucometer transducer. The presence of a target microRNA triggers the cascading hybridization chain reaction to create long supersandwich assemblies containing multiple biotin-labelled DNA probes. Then, large amounts of biotin-modified invertase signal molecules can attach to the supersandwich assemblies to generate an amplified signal for the glucometer readout. With such supersandwich format, a single target microRNA can introduce many biotin-invertase signal molecules, resulting in a one-to-multiple amplification effect. Thus, the accurate quantification of microRNAs can be achieved in a simple detection fashion without the requirement of expensive or precise instrumentation. The linear range of the biosensor for microRNA was from 0.05 to 100 nM with a detection limit of 48 pM. The proposed biosensor can discriminate the target microRNA from its family members with high selectivity and can be successfully applied to the detection of target microRNA spiked in serum samples with a good recovery (96.0-108.0%). Therefore, the proposed biosensor is expected to provide more information for early and accurate cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Electroquímicas/métodos , Biotina , beta-Fructofuranosidasa , Técnicas Biosensibles/métodos , Fenómenos Magnéticos
18.
Anal Chim Acta ; 1233: 340515, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283789

RESUMEN

Sensitive and selective detection of neutrophil gelatinase-associated lipocalin (NGAL) is critical for the prediction and early diagnosis of acute renal injury. In this work, the establishment of an aptamer-based, highly sensitive and label-free method for detecting NGAL in diluted human serums via metal ion-dependent DNAzyme- and exonuclease III (Exo III)-triggered recycling signal amplification cascades is described. NGAL binds with the aptamer strands in the DNAzyme/aptamer duplexes and results in the liberation of the metal ion-dependent DNAzyme sequences to cleave the hairpin signal probes on the electrode to liberate the G-quadruplex and intermediate strands. The released intermediate strands further complement with the DNAzyme/aptamer duplexes to form favorable substrate for Exo III, which digests the duplexes to release the DNAzyme strands to initiate the cascaded recycling cycles for the yield of plenty of G-quadruplex strands. Hemin can associate with G-quadruplex strands to produce many G-quadruplex/hemin complexes and electrochemical reduction of hemin thus generates highly amplified current for detecting NGAL with the detection limit of 4.45 ng mL-1. Such biosensor also shows high selectivity and can be utilized for monitoring NGAL spiked in diluted serum, indicating its extension potential for detecting various protein biomarkers with different aptamers for disease diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Humanos , ADN Catalítico/química , Hemina/química , Lipocalina 2/metabolismo , Técnicas Biosensibles/métodos , Límite de Detección , Técnicas Electroquímicas/métodos , Aptámeros de Nucleótidos/química
19.
Analyst ; 147(20): 4578-4586, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36106920

RESUMEN

Ochratoxin A (OTA) is a highly toxic food contaminant and is harmful to human beings. Herein, a ratiometric electrochemical aptasensor based on a DNA tetrahedral nanomaterial (NTH) was developed in combination with the signal tag of a zirconium metal-organic framework (UiO-66) for the detection of OTA. In the sensor, UiO-66 and a [Fe(CN)6]3-/4- electrolyte solution were used as the signal probe and the internal reference probe, respectively. In the presence of OTA, the OTA aptamer was released from the electrode due to the specific binding of OTA. Thus, signal probe P1 labeled-UiO-66 was captured on the electrode surface by hybridization with DNA NTH. Since signal probe P1 labeled-UiO-66 was close to the electrode, it leads to an increased signal current of UiO-66 at +0.9 V. As the conductivity of the modified electrode decreased, the current signal of [Fe(CN)6]3-/4- at +0.2 V also decreased. The proposed ratiometric electrochemical aptasensor could effectively eliminate external environmental influences and could avoid electrochemical background signals. The aptasensor demonstrated high specificity for OTA, and achieved a good linear range of 1 pg mL-1-100 ng mL-1 with a detection limit of 330 fg mL-1. The developed electrochemical aptamer biosensor effectively detected OTA in corn kernel samples, verifying its practical application for the determination of OTA in actual samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Nanoestructuras , Ocratoxinas , ADN , Técnicas Electroquímicas , Electrólitos , Oro , Humanos , Límite de Detección , Ocratoxinas/análisis , Ácidos Ftálicos , Zea mays , Circonio
20.
Pediatr Diabetes ; 23(5): 588-596, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35757975

RESUMEN

OBJECTIVE: To confirm the diagnosis of a 13-year-old adolescent with familial diabetes and further examine his genetic pathogeny. RESEARCH DESIGN AND METHODS: Clinical data were collected, and genetic examination was performed. PolyPhen-2 and Mutation Taster were used to predict the deleterious effects of the variant. Clustal Omega software was used to confirm the conservation of amino acid substitutions. To examine changes in the expression of proteins, recombinant vectors were constructed, and the expression of wild-type and variant target genes was detected through quantitative polymerase chain reaction. Furthermore, the wild-type and variant eukaryotic recombinant vectors were treated with a ubiquitin degradation inhibitor (MG132) and a lysosomal degradation pathway inhibitor (CQ, 3-mA). The expression of target proteins was detected through Western blot analysis. RESULTS: The patient had hyperglycaemia (27 mmol/L), a high HbA1c level (13.1%), a decreased C-peptide level (0.63 ng/ml) and no diabetes antibodies. The patient had a family history of diabetes. The novel variation of ABCC8 c.2477G>A was detected in the proband and his relatives. The mutation was predicted to be harmful. Changes in the protein structure were observed. The ABCC8 c.2477G >A variant resulted in an increase in ABCC8 expression. Furthermore, changes in the expression of the ABCC8 variant was observed after 3-MA treatment, especially after treatment with MG132. At the follow-up, the patient's glucose level was normal without drug therapy for more than 2 years until until he started taking Trelagliptin Succinate to control hyperglycemia within the recent 6 months. CONCLUSIONS: The diagnosis of maturity-onset diabetes of the young (MODY)12 was confirmed in our patient. The ABCC8 variant inhibited both ubiquitination and autophagy lysosome degradation pathways, especially the ubiquitination degradation pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Adolescente , Diabetes Mellitus Tipo 2/diagnóstico , Pruebas Genéticas , Humanos , Hiperglucemia/genética , Masculino , Mutación , Receptores de Sulfonilureas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...