Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Intell ; 11(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37103259

RESUMEN

The role of metacontrol in creativity is theoretically assumed, but experimental evidence is still lacking. In this study, we investigated how metacontrol affects creativity from the perspective of individual differences. Sixty participants completed the metacontrol task, which was used to divide participants into a high-metacontrol group (HMC) versus a low (LMC) group. Then, these participants performed the alternate uses task (AUT; divergent thinking) and the remote associates test (RAT; convergent thinking), while their EEG results were recorded continuously. Regarding their behavior, the HMC group showed superior creative performance in the AUT and RAT, compared with the LMC group. For the electrophysiology, the HMC group showed larger stimulus-locked P1 and P3 amplitudes than the LMC group. Furthermore, the HMC group exhibited smaller alpha desynchronization (ERD) than the LMC group at the initial stages of the AUT task, followed by a flexible switching between alpha synchronization and desynchronization (ERS-ERD) during the process of selective retention in the AUT. In addition, the HMC group evoked smaller alpha ERD during the initial retrieval and the backtracking process in the RAT, associated with cognitive control adaptability. The aforementioned results indicate that metacontrol reliably contributes to the idea generation process, and HMC individuals could flexibly adjust their cognitive control strategies according to the demand for creative idea generation.

2.
ACS Nano ; 16(12): 21324-21333, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36519795

RESUMEN

Reservoir computing (RC) is a computational architecture capable of efficiently processing temporal information, which allows low-cost hardware implementation. However, the previously reported memristor-based RC mostly utilized binarized data sets to reduce the difficulty of signal processing of the memristor, which inevitably induces data distortion to a certain extent, leading to poor network computing performance. Here, we report on a RC system in a fully memristive architecture based on solution-processed perovskite memristors. The perovskite memristor exhibits 10000 conductance states with a modulation range of more than 4 orders of magnitude. The obtained tens of thousands of finely spaced conductance states with a near-ideal analog property provide a sufficiently large dynamic range and enough intermediate states, which were further applied as a reservoir to map the feature information on different sequential inputs in an analog way. The computing capability of the image classification task of a Fashion-MNIST data set with a high recognition accuracy of up to 90.1% shows that the excellent analog and short-term properties of our perovskite memristor allow the hardware implementation of neuromorphic computing with a reduced training cost.

3.
Front Chem ; 10: 910710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665058

RESUMEN

A series of novel galactoside derivatives containing 1,3,4-thiadiazole moiety were synthesized, and the structure of them was verified by spectroscopy of NMR and HRMS, and antifungal and antibacterial activities of them were screened. The results showed that the newly synthesized compounds had good antifungal activities. Among them, Ⅲ16, Ⅲ17, and Ⅲ19 exhibited satisfactory activities against Phytophthora infestans (P. infestans), with EC50 values of 5.87, 4.98, and 6.17 µg/ml, respectively, which were similar to those of dimethomorph (5.52 µg/ml). Meanwhile, the title compounds also possessed certain antibacterial activities.

4.
Theor Appl Genet ; 135(8): 2785-2797, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35760921

RESUMEN

KEY MESSAGE: In response to cold, a 215-bp deletion at intron I of BoFLC2 slows its silencing activity by feedback to the core genes of the PHD-PRC2 complex, resulting in late flowering in cabbage. Cabbage is a plant-vernalization-responsive flowering type. In response to cold, BoFLC2 is an important transcription factor, which allows cabbage plants to remain in the vegetative phase. However, there have been few reports on the detailed and functional effects of genetic variation in BoFLC2 on flowering time in cabbage. Herein, BoFLC2E and BoFLC2L, cloned from extremely early and extremely late flowering cabbages, respectively, exhibited a 215-bp indel at intron I, three non-synonymous SNPs and a 3-bp indel at exon II. BoFLC2L was found to be related to late flowering, as verified in 40 extremely early/late flowering accessions, a diverse set of cabbage inbred lines and two F2 generations by using indel-FLC2 marker. Among the genetic variation of BoFLC2, the 215-bp deletion at intron I was the main reason for the delayed flowering time, as verified in the transgenic progenies of seed-vernalization-responsive Arabidopsis thaliana (Col) and rapid cycler B. oleracea (TO1000, boflc2). This is the first report to show that the intron I indel of BoFLC2 affects the flowering time of cabbage. Although the intron I 215-bp indel between BoFLC2E and BoFLC2L did not cause alternative splicing, it slowed BoFLC2L silencing during vernalization and feedback to the core genes of the PHD-PRC2 complex, resulting in their lower transcription levels. Our study not only provides an effective molecular marker-assisted selective strategy for identifying bolting-resistant resources and breeding improved varieties in cabbage, but also provides an entry point for exploring the mechanisms of flowering time in plant-vernalization-responsive plants.


Asunto(s)
Arabidopsis , Brassica , Arabidopsis/genética , Brassica/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Mutación INDEL , Intrones , Fitomejoramiento , Proteínas de Plantas/genética
5.
Mater Horiz ; 9(7): 1878-1887, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35726680

RESUMEN

The floating body effect in Meta-Stable-Dip RAM (MSDRAM) has been broadly employed in implementing single-transistor capacitor-less (1T0C) dynamic random access memory (DRAM) cells to break through the limitation of finite size reduction of peripheral capacitors. However, the majority of them were broadly demonstrated in conventional CMOS technology, while emerging semiconductor systems are rarely explored. Here, we creatively explore exfoliated multilayer tungsten diselenide (WSe2) for the application of 1T0C DRAM, breaking the limitation of channel thickness in the traditional architecture. Through the comparison of the electrical characteristics among three dual-gate transistors with different lengths of top-gate, we demonstrated the essential role of the floating body effect in achieving the function of 1T0C DRAM displaying two distinct states that are differentiated by hole population within the floating body. Moreover, according to the analysis of in situ electrostatic force microscopy (EFM) measurements and theoretical calculation via density functional theory (DFT), the injection of holes through band-to-band (B2B) tunneling can be ascribed to the effectively electrostatic modulation. These consequences prove our innovative concept to achieve the function of 1T0C DRAM through employing the ML WSe2, which is a vital step toward the breakthrough of the inherent limitations of DRAM cells.


Asunto(s)
Semiconductores
6.
Small ; 18(12): e2106253, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35083839

RESUMEN

2D materials with intriguing properties have been widely used in optoelectronics. However, electronic devices suffered from structural damage due to the ultrathin materials and uncontrolled defects at interfaces upon metallization, which hindered the development of reliable devices. Here, a damage-free Au/h-BN/Au memristor is reported using a clean, water-assisted metal transfer approach by physically assembling Au electrodes onto the layered h-BN which minimized the structural damage and undesired interfacial defects. The memristors demonstrate significantly improved performance with the coexistence of nonpolar and threshold switching as well as tunable current levels by controlling the compliance current, compared with devices with evaporated contacts. The devices integrated into an array show suppressed sneak path current and can work as both logic gates and latches to implement logic operations allowing in-memory computing. Cross-sectional scanning transmission electron microscopy analysis validates the feasibility of this nondestructive metal integration approach, the crucial role of high-quality atomically sharp interface in resistive switching, and a direct observation of percolation path. The underlying mechanism of boron vacancies-assisted transport is further supported experimentally by conductive atomic force microscopy free from process-induced damage, and theoretically by ab initio simulations.

7.
Nat Commun ; 12(1): 5979, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645801

RESUMEN

The lobula giant movement detector (LGMD) is the movement-sensitive, wide-field visual neuron positioned in the third visual neuropile of lobula. LGMD neuron can anticipate collision and trigger avoidance efficiently owing to the earlier occurring firing peak before collision. Vision chips inspired by the LGMD have been successfully implemented in very-large-scale-integration (VLSI) system. However, transistor-based chips and single devices to simulate LGMD neurons make them bulky, energy-inefficient and complicated. The devices with relatively compact structure and simple operation mode to mimic the escape response of LGMD neuron have not been realized yet. Here, the artificial LGMD visual neuron is implemented using light-mediated threshold switching memristor. The non-monotonic response to light flow field originated from the formation and break of Ag conductive filaments is analogue to the escape response of LGMD neuron. Furthermore, robot navigation with obstacle avoidance capability and biomimetic compound eyes with wide field-of-view (FoV) detection capability are demonstrated.

8.
Adv Mater ; 32(52): e2003610, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33165986

RESUMEN

The human brain is a sophisticated, high-performance biocomputer that processes multiple complex tasks in parallel with high efficiency and remarkably low power consumption. Scientists have long been pursuing an artificial intelligence (AI) that can rival the human brain. Spiking neural networks based on neuromorphic computing platforms simulate the architecture and information processing of the intelligent brain, providing new insights for building AIs. The rapid development of materials engineering, device physics, chip integration, and neuroscience has led to exciting progress in neuromorphic computing with the goal of overcoming the von Neumann bottleneck. Herein, fundamental knowledge related to the structures and working principles of neurons and synapses of the biological nervous system is reviewed. An overview is then provided on the development of neuromorphic hardware systems, from artificial synapses and neurons to spike-based neuromorphic computing platforms. It is hoped that this review will shed new light on the evolution of brain-like computing.


Asunto(s)
Ingeniería , Redes Neurales de la Computación , Neuronas/citología , Humanos
9.
Nano Lett ; 20(7): 5562-5569, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32579373

RESUMEN

Core-shell semiconductor quantum dots (QDs) are one of the biggest nanotechnology successes so far. In particular, type-I QDs with straddling band offset possess the ability to enhance the charge carriers capturing which is useful for memory application. Here, the type-I core-shell QD-based bipolar resistive switching (RS) memory with anomalous multiple SET and RESET processes was demonstrated. The synergy and competition between space charge limited current conduction (arising from charge trapping in potential well of type-I QDs) and electrochemical metallization (ECM, originating from redox reaction of Ag electrode) process were employed for modulating the RS behavior. Through utilizing stochastic RS mechanisms in QD-based devices, four situations of RS behaviors can be classified into three states in Markov chain for implementing the application of a true random number generator. Furthermore, a 6 × 6 cross-bar array was demonstrated to realize the generation of random letters with case distinction.

10.
Nanoscale ; 12(3): 1484-1494, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31909402

RESUMEN

Artificial limbs have been widely investigated in the past several decades, and multifuncional bionic limbs have already been constructed. However, due the lack of nociceptive systems, amputees still cannot feel ubiquitous noxious stimuli through bionic limbs. The construction of artificial nociceptors can bring bionic limbs closer to real flesh and bone. In daily life, UV irradiation is an invisible potential noxious stimulus to human skin and eyes. Furthermore, it is well known that the synthetic polymers widely used in bionic limbs can be degraded by UV radiation, accelerating their aging. Based on the above, UV damage-sensing nociceptors could be a feasible strategy to solve these existing problems. Here, azobenzene-functionalized gold nanoparticles (Azo-Au NPs) are embedded in insulating poly(methyl methacrylate) (PMMA) to construct a two-terminal memristor. With UV irradiation as a light damage medium, major nociceptive behaviors such as "threshold", "relaxation" and "sensitization" are successfully emulated, demonstrating its potential application as a nociceptive system.


Asunto(s)
Miembros Artificiales , Oro/química , Membranas Artificiales , Nanopartículas del Metal/química , Nocicepción , Rayos Ultravioleta , Biónica , Humanos
11.
RSC Adv ; 9(3): 1586-1590, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35518024

RESUMEN

By condensing M and TFP under solvothermal conditions, a new porous organic polymer POPM-TFP was obtained. The electrode modified with triazine containing POPM-TFP exhibits well-defined rapid redox processes and showed a high specific capacitance of 130.5 F g-1 at 2 A g-1, suggesting well electrochemical performance.

12.
Adv Mater ; 30(30): e1801232, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29888554

RESUMEN

High-performance photonic nonvolatile memory combining photosensing and data storage with low power consumption ensures the energy efficiency of computer systems. This study first reports in situ derived phosphorene/ZnO hybrid heterojunction nanoparticles and their application in broadband-response photonic nonvolatile memory. The photonic nonvolatile memory consistently exhibits broadband response from ultraviolet (380 nm) to near infrared (785 nm), with controllable shifts of the SET voltage. The broadband resistive switching is attributed to the enhanced photon harvesting, a fast exciton separation, as well as the formation of an oxygen vacancy filament in the nano-heterojunction. In addition, the device exhibits an excellent stability under air exposure compared with reported pristine phosphorene-based nonvolatile memory. The superior antioxidation capacity is believed to originate from the fast transfer of lone-pair electrons of phosphorene. The unique assembly of phosphorene/ZnO nano-heterojunctions paves the way toward multifunctional broadband-response data-storage techniques.

13.
Small ; 14(28): e1800288, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29806246

RESUMEN

Inspired by the highly parallel processing power and low energy consumption of the biological nervous system, the development of a neuromorphic computing paradigm to mimic brain-like behaviors with electronic components based artificial synapses may play key roles to eliminate the von Neumann bottleneck. Random resistive access memory (RRAM) is suitable for artificial synapse due to its tunable bidirectional switching behavior. In this work, a biological spiking synapse is developed with solution processed Au@Ag core-shell nanoparticle (NP)-based RRAM. The device shows highly controllable bistable resistive switching behavior due to the favorable Ag ions migration and filament formation in the composite film, and the good charge trapping and transport property of Au@Ag NPs. Moreover, comprehensive synaptic functions of biosynapse including paired-pulse depression, paired-pulse facilitation, post-tetanic potentiation, spike-time-dependent plasticity, and the transformation from short-term plasticity to long-term plasticity are emulated. This work demonstrates that the solution processed bimetal core-shell nanoparticle-based biological spiking synapse provides great potential for the further creation of a neuromorphic computing system.


Asunto(s)
Potenciales de Acción/fisiología , Metales/química , Nanocompuestos/química , Nanopartículas/química , Sinapsis/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Soluciones , Compuestos de Estaño/química
14.
ACS Appl Mater Interfaces ; 7(39): 21735-44, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26371955

RESUMEN

It is meaningful to exploit copper sulfide materials with desired structure as well as potential application due to their cheapness and low toxicity. A low-temperature and facile solvothermal method for preparing three-dimensional (3D) hierarchical covellite (CuS) microspheres from an ionic liquid precursor [Bmim]2Cu2Cl6 (Bmim = 1-butyl-3-methylimidazolium) is reported. The formation of CuS nanostructures was achieved by decomposition of intermediate complex Cu(Tu)3Cl (thiourea = Tu), which produced CuS microspheres with diameters of 2.5-4 µm assembled by nanosheets with thicknesses of 10-15 nm. The ionic liquid, as an "all-in-one" medium, played a key role for the fabrication and self-assembly of CuS nanosheets. The alkylimidazolium rings ([Bmim](+)) were found to adsorb onto the (001) facets of CuS crystals, which inhibited the crystal growth along the [001] direction, while the alkyl chain had influence on the assembly of CuS nanosheets. The CuS microspheres showed enhanced electrochemical performance and high stability for the application in supercapacitors due to intriguing structural design and large specific surface area. When this well-defined CuS electrode was assembled into an asymmetric supercapacitor (ASC) with an activated carbon (AC) electrode, the CuS//AC-ASC demonstrated good cycle performance (∼88% capacitance after 4000 cycles) and high energy density (15.06 W h kg(-1) at a power density of 392.9 W kg(-1)). This work provides new insights into the use of copper sulfide electrode materials for asymmetric supercapacitors and other electrochemical devices.

15.
Chemistry ; 20(19): 5657-64, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24700422

RESUMEN

Uncovering the reason for structure-dependent thermoelectric performance still remains a big challenge. A low-temperature and easily scalable strategy for synthesizing Bi2 Te3 nanostring hierarchical structures through solution-phase reactions, during which there is the conversion of "homo-hetero-homo" in Bi2 Te3 heteroepitaxial growth, is reported. Bi2 Te3 nanostrings are obtained through the transformation from pure Bi2 Te3 hexagonal nanosheets followed by TeBi2 Te3 "nanotop" heterostructures to Bi2 Te3 nanostrings. The growth of Bi2 Te3 nanostrings appears to be a self-assembly process through a wavy competition process generated from Te and Bi(3+) . The conversion of homo-hetero-homo opens up new platforms to investigate the wet chemistry of Bi2 Te3 nanomaterials. Furthermore, to study the effect of morphologies and hetero/homo structures, especially with the same origin and uniform conditions on their thermoelectric properties, the thermoelectric properties of Bi2 Te3 nanostrings and TeBi2 Te3 heterostructured pellets fabricated by spark plasma sintering have been investigated separately.

16.
ACS Appl Mater Interfaces ; 5(18): 9095-100, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23968356

RESUMEN

A general and facile one-pot template-free hydrothermal strategy has been developed to synthesize various metal oxide (TiO2, SnO2 and α-Fe2O3) hollow spheres with unified morphologies. The formation of hollow structure involves a trifluoroacetic acid (TFA)-assisted Ostwald ripening process. Photocatalytic activities of the as-prepared TiO2 product are evaluated by the photodegradation of Rhodamine B (RhB), which the TiO2 hollow spheres obtained from 450 °C thermal treatment exhibit higher photocatalytic activity than Degussa P25. In addition, electrochemical measurements demonstrate that all of the as-prepared metal oxides hollow spheres have the potential applications in lithium-ion battery. We have a great expectation that this synthesis strategy can afford a new universal route for functional metal oxide hollow materials preparation without using template.


Asunto(s)
Suministros de Energía Eléctrica , Compuestos Férricos/química , Litio/química , Compuestos de Estaño/química , Titanio/química , Catálisis , Técnicas Electroquímicas , Fotólisis , Rodaminas/química , Ácido Trifluoroacético/química
17.
Dalton Trans ; 40(39): 10100-8, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21904735

RESUMEN

The Bi(2)S(3) nanomaterials with various morphologies such as nanorods, nanowires, nanowire bundles, urchin-like microspheres and urchin-like microspheres with cavities have been successfully synthesized through a simple hydrothermal method. Experimental results indicate that sulfur sources play crucial roles in determining the morphologies of Bi(2)S(3) products. Moreover, formation mechanisms of different Bi(2)S(3) nanostructures are discussed based on understanding of the growth habit of Bi(2)S(3) crystal. Finally, we also studied the morphologies-dependent electrochemical and optical properties of the as-synthesized Bi(2)S(3) nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...