Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biol Proced Online ; 26(1): 9, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594619

RESUMEN

BACKGROUND: MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), original found in synthetic heroin, causes Parkinson's disease (PD) in human through its metabolite MPP+ by inhibiting complex I of mitochondrial respiratory chain in dopaminergic neurons. This study explored whether yeast internal NADH-quinone oxidoreductase (NDI1) has therapeutic effects in MPTP- induced PD models by functionally compensating for the impaired complex I. MPP+-treated SH-SY5Y cells and MPTP-treated mice were used as the PD cell culture and mouse models respectively. The recombinant NDI1 lentivirus was transduced into SH-SY5Y cells, or the recombinant NDI1 adeno-associated virus (rAAV5-NDI1) was injected into substantia nigra pars compacta (SNpc) of mice. RESULTS: The study in vitro showed NDI1 prevented MPP+-induced change in cell morphology and decreased cell viability, mitochondrial coupling efficiency, complex I-dependent oxygen consumption, and mitochondria-derived ATP. The study in vivo revealed that rAAV-NDI1 injection significantly improved the motor ability and exploration behavior of MPTP-induced PD mice. Accordingly, NDI1 notably improved dopaminergic neuron survival, reduced the inflammatory response, and significantly increased the dopamine content in striatum and complex I activity in substantia nigra. CONCLUSIONS: NDI1 compensates for the defective complex I in MPP+/MPTP-induced models, and vastly alleviates MPTP-induced toxic effect on dopaminergic neurons. Our study may provide a basis for gene therapy of sporadic PD with defective complex I caused by MPTP-like substance.

2.
Environ Pollut ; 347: 123789, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490526

RESUMEN

The co-occurrence of cyanobacterial blooms and nano-microplastic pollution in the water is becoming an emerging risk. To assess the combined hepatotoxicity of microcystin-LR (MC-LR) and polystyrene microplastics (PSMPs) on zebrafish (Danio rerio), male adult zebrafish were exposed to single MC-LR (0, 1, 5, 25 µg/L) and a mixture of MC-LR and PSMPs (100 µg/L). After 60 d exposure, the results indicated that PSMPs significantly increased the MC-LR bioaccumulation in the livers in contrast to the single 25 µg/L MC-LR treatment group. Moreover, the severity of hepatic pathological lesions was aggravated in the MC-LR + PSMPs treatment groups, which were mainly characterized by cellular vacuolar degeneration, swollen hepatocytes, and pyknotic nucleus. The ultrastructural changes also proved that PSMPs combined with MC-LR could enhance the swollen mitochondria and dilated endoplasmic reticulum. The biochemical results, including increased malondialdehyde (MDA) and decreased glutathione (GSH), indicated that PSMPs intensified the MC-LR-induced oxidative damage in the combined treatment groups. Concurrently, alterations of sod1 and keap1a mRNA levels also confirmed that PSMPs together with MC-LR jointly lead to enhanced oxidative injury. Our findings demonstrated that PSMPs enhanced the MC-LR bioavailability by acting as a vector and exacerbating the hepatic injuries and antioxidant dysfunction in zebrafish.


Asunto(s)
Antioxidantes , Toxinas Marinas , Contaminantes Químicos del Agua , Animales , Masculino , Pez Cebra , Microplásticos/toxicidad , Plásticos , Poliestirenos/toxicidad , Microcistinas/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
Front Immunol ; 15: 1247382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343546

RESUMEN

Purpose: The pathogenesis of renal fibrosis (RF) involves intricate interactions between profibrotic processes and immune responses. This study aimed to explore the potential involvement of the pyroptosis signaling pathway in immune microenvironment regulation within the context of RF. Through comprehensive bioinformatics analysis and experimental validation, we investigated the influence of pyroptosis on the immune landscape in RF. Methods: We obtained RNA-seq datasets from Gene Expression Omnibus (GEO) databases and identified Pyroptosis-Associated Regulators (PARs) through literature reviews. Systematic evaluation of alterations in 27 PARs was performed in RF and normal kidney samples, followed by relevant functional analyses. Unsupervised cluster analysis revealed distinct pyroptosis modification patterns. Using single-sample gene set enrichment analysis (ssGSEA), we examined the correlation between pyroptosis and immune infiltration. Hub regulators were identified via weighted gene coexpression network analysis (WGCNA) and further validated in a single-cell RNA-seq dataset. We also established a unilateral ureteral obstruction-induced RF mouse model to verify the expression of key regulators at the mRNA and protein levels. Results: Our comprehensive analysis revealed altered expression of 19 PARs in RF samples compared to normal samples. Five hub regulators, namely PYCARD, CASP1, AIM2, NOD2, and CASP9, exhibited potential as biomarkers for RF. Based on these regulators, a classifier capable of distinguishing normal samples from RF samples was developed. Furthermore, we identified correlations between immune features and PARs expression, with PYCARD positively associated with regulatory T cells abundance in fibrotic tissues. Unsupervised clustering of RF samples yielded two distinct subtypes (Subtype A and Subtype B), with Subtype B characterized by active immune responses against RF. Subsequent WGCNA analysis identified PYCARD, CASP1, and NOD2 as hub PARs in the pyroptosis modification patterns. Single-cell level validation confirmed PYCARD expression in myofibroblasts, implicating its significance in the stress response of myofibroblasts to injury. In vivo experimental validation further demonstrated elevated PYCARD expression in RF, accompanied by infiltration of Foxp3+ regulatory T cells. Conclusions: Our findings suggest that pyroptosis plays a pivotal role in orchestrating the immune microenvironment of RF. This study provides valuable insights into the pathogenesis of RF and highlights potential targets for future therapeutic interventions.


Asunto(s)
Biología Computacional , Piroptosis , Animales , Ratones , Reacciones Cruzadas , Caspasa 1 , Análisis por Conglomerados
4.
Cell Death Dis ; 14(8): 531, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37591836

RESUMEN

Unfolded protein response (UPR) maintains the endoplasmic reticulum (ER) homeostasis, survival, and physiological function of mammalian cells. However, how cells adapt to ER stress under physiological or disease settings remains largely unclear. Here by a genome-wide CRISPR screen, we identified that RBBP8, an endonuclease involved in DNA damage repair, is required for ATF4 activation under ER stress in vitro. RNA-seq analysis suggested that RBBP8 deletion led to impaired cell cycle progression, retarded proliferation, attenuated ATF4 activation, and reduced global protein synthesis under ER stress. Mouse tissue analysis revealed that RBBP8 was highly expressed in the liver, and its expression is responsive to ER stress by tunicamycin intraperitoneal injection. Hepatocytes with RBBP8 inhibition by adenovirus-mediated shRNA were resistant to tunicamycin (Tm)-induced liver damage, cell death, and ER stress response. To study the pathological role of RBBP8 in regulating ATF4 activity, we illustrated that both RBBP8 and ATF4 were highly expressed in liver cancer tissues compared with healthy controls and highly expressed in Ki67-positive proliferating cells within the tumors. Interestingly, overexpression of RBBP8 in vitro promoted ATF4 activation under ER stress, and RBBP8 expression showed a positive correlation with ATF4 expression in liver cancer tissues by co-immunostaining. Our findings provide new insights into the mechanism of how cells adapt to ER stress through the crosstalk between the nucleus and ER and how tumor cells survive under chemotherapy or other anticancer treatments, which suggests potential therapeutic strategies against liver disease by targeting DNA damage repair, UPR or protein synthesis.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias Hepáticas , Animales , Ratones , Tunicamicina/farmacología , Respuesta de Proteína Desplegada , Neoplasias Hepáticas/genética , Mamíferos
5.
Front Microbiol ; 14: 1232453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645223

RESUMEN

Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.

6.
Surg Radiol Anat ; 45(11): 1505-1514, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37578527

RESUMEN

PURPOSE: This retrospective study aimed to determine the prevalence and morphological characteristics of accessory mandibular canals (AMCs) in an eastern Chinese population to provide clinical guidance for reducing intraoperative and postoperative complications. METHODS: Cone beam computed tomography (CBCT) scans of 300 Chinese patients were used to identify AMCs according to a modification of Naitoh's classification. The length of the branch (L0) and the upper and lower angles between the branch and mandibular canal were measured on sagittal images. Additionally, the branches were divided into narrow or wide types by calculating the ratio of the branch diameter to the main canal diameter. The location of the bifurcation point was characterized by measuring its distance to the buccal wall of the mandible (L1), lingual wall of the mandible (L2) and alveolar ridge (L3). RESULTS: The prevalence rate of AMCs was 40.7% (95% CI: 35.1-46.3), and the most common type was the retromolar canal, followed by the forward canal, dental canal, trifid mandibular canals (TMCs) or others, inferior canal and buccolingual canal. Twenty-one cases of multiple branches with unusual patterns were observed in the study. The average values of L0, L1, L2 and L3 were 15.05 ± 0.63 mm, 5.79 ± 0.14 mm, 4.40 ± 0.18 mm and 14.61 ± 0.31 mm, respectively. The mean upper angle and lower angle were 141.59° ± 2.44° and 50.64° ± 2.57°, respectively. Approximately 20.8% of the branches were defined as wide type, and no statistical significance was found between different types. CONCLUSION: AMCs are not rare anatomic variations of the mandibular canal in the eastern Chinese population; thus, CBCT examination is highly recommended for precise evaluation before surgeries involving the mandibles.

7.
Am J Transl Res ; 15(6): 4291-4313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434823

RESUMEN

OBJECTIVES: To explore the key genes involved in the occurrence and development of glioblastoma (GBM) by analyzing whole-transcriptome sequencing and biologic data from GBM and normal cerebral cortex tissues and to search for important noncoding RNA (ncRNA) molecular markers based on the competitive endogenous RNA (ceRNA) network. METHODS: Ten GBM and normal cerebral cortex tissues were collected for full transcriptome sequencing, screened for differentially expressed (DE) mRNAs, miRNAs, lncRNAs, and circRNAs, and subjected to bioinformatic analysis. We constructed a Protein-Protein Interaction (PPI) network and a circRNA/lncRNA-miRNA-mRNA regulatory network and identified them using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Finally, The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were used to validate and conduct a survival analysis of the target genes. RESULTS: A total of 5341 DEmRNAs, 259 DEmiRNAs, 3122 DElncRNAs, and 2135 DEcircRNAs were identified. Enrichment analysis showed that target genes regulated by DEmiRNA, DElncRNA, and DEcircRNA were closely related to chemical synaptic transmission and ion transmembrane transport. A PPI network analysis screened 10 hub genes that directly participate in tumor cell mitosis regulation. In addition, the ceRNA composite network showed that hsa-miR-296-5p and hsa-miR-874-5p were the central nodes of the network, and the reliability of relevant key molecules was successfully verified through RT-qPCR identification and the TCGA database. The CGGA database survival analysis produced 8 DEmRNAs closely related to GBM patient survival prognosis. CONCLUSIONS: This study revealed the important regulatory functions and molecular mechanisms of ncRNA molecules and identified hsa-miR-296-5p and hsa-miR-874-5p as key molecules in the ceRNA network. They may play an important role in GBM pathogenesis, treatment, and prognosis.

8.
Sci Total Environ ; 876: 162664, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36894083

RESUMEN

The coexistence of eutrophication and plastic pollution in the aquatic environment is becoming a realistic water pollution problem worldwide. To investigate the microcystin-LR (MC-LR) bioavailability and the underlying reproductive interferences in the presence of polystyrene microplastic (PSMPs), zebrafish (Danio rerio) were exposed to individual MC-LR (0, 1, 5, and 25 µg/L) and combined MC-LR + PSMPs (100 µg/L) for 60 d. Our results showed that the existence of PSMPs increased the accumulation of MC-LR in zebrafish gonads compared to the MC-LR-only group. In the MC-LR-only exposure group, seminiferous epithelium deterioration and widened intercellular spaces were observed in the testis, and basal membrane disintegration and zona pellucida invagination were noticed in the ovary. Moreover, the existence of PSMPs exacerbated these injuries. The results of sex hormone levels showed that PSMPs enhanced MC-LR-induced reproductive toxicity, which is tightly related to the abnormal increase of 17ß-estradiol (E2) and testosterone (T) levels. The changes of gnrh2, gnrh3, cyp19a1b, cyp11a, and lhr mRNA levels in the HPG axis further proved that MC-LR combined with PSMPs aggravated reproductive dysfunction. Our results revealed that PSMPs could increase the MC-LR bioaccumulation by serving as a carrier and exaggerate the MC-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Masculino , Animales , Femenino , Plásticos , Microplásticos , Poliestirenos/toxicidad , Gónadas , Microcistinas/toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
Ecotoxicol Environ Saf ; 254: 114724, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871356

RESUMEN

Ammonia, as one of the primary water pollutants in aquaculture, has been shown to induce a wide range of ecotoxicological effects on aquatic animals. In order to investigate the antioxidant and innate immune responses in crustaceans disrupted by ammonia, red swamp crayfish (Procambarus clarkii) were exposed to 0, 15, 30, and 50 mg/L total ammonia nitrogen for 30 d, the alterations of antioxidant responses as well as innate immunity were studied. The results showed that the severity of hepatopancreatic injury were aggravated by the increasing ammonia levels, which were mainly characterized by tubule lumen dilatation and vacuolization. The swollen mitochondria and disappeared mitochondria ridges suggested that oxidative stress induced by ammonia targets the mitochondria. Concurrently, enhanced MDA levels, and decreased GSH levels as well as the decreased transcription and activity of antioxidant enzymes, including SOD, CAT, and GPx were noticed, which suggested that high concentrations of ammonia exposure induce oxidative stress in P. clarkii. Furthermore, a significant decrease of the hemolymph ACP, AKP, and PO along with the significant downregulation of immune-related genes (ppo, hsp70, hsp90, alf1, ctl) jointly indicated that ammonia stress inhibited the innate immune function. Our findings demonstrated that sub-chronic ammonia stress induced hepatopancreatic injury and exert suppressive effects on the antioxidant capacity as well as innate immunity of P. clarkii. Our results provide a fundamental basis for the deleterious effects of ammonia stress on aquatic crustaceans.


Asunto(s)
Antioxidantes , Astacoidea , Animales , Antioxidantes/metabolismo , Astacoidea/fisiología , Amoníaco/toxicidad , Estrés Oxidativo , Inmunidad Innata
10.
Materials (Basel) ; 16(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837335

RESUMEN

Phase relations of the Fe-Cr-Er system in the temperature range 973-1273 K were experimentally investigated using equilibrated alloys. The isothermal sections consisted of 9 single-phase regions, 16 two-phase regions, and 8 three-phase regions at 973 K and 1073 K. At 1273 K, the σ phase disappeared, and liquid appeared. All single phases had a solid solubility range that showed a downward trend with a decrease in temperature. The homogeneity range of the ErFe12-xCrx ternary compound was determined to be x = 1.8-4.5. The more accurate phase relations obtained in this work can better guide the preparation of Fe-Cr-Er alloys in actual production.

11.
J Nutr Biochem ; 112: 109213, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36370931

RESUMEN

Diabetic retinopathy (DR) is one of the most prevalent microvascular complications caused by diabetes mellitus. Previous studies demonstrate that microvascular endothelial inflammation caused by chronic hyperglycemia and hyperlipidemia plays a key role in the pathogenesis of DR. However, the detailed mechanisms on how endothelial inflammation contributes to DR are not fully understood. The STING pathway is an important innate immune signaling pathway. Although STING has been implicated in multiple autoimmune and metabolic diseases, it is not clear whether STING is involved in the pathogenesis of DR. Thus, re-analysis of the public single cell RNA sequencing (sc-RNAseq) data demonstrated that STING was highly expressed in mouse retinal vessels. Moreover, our results demonstrated that STING and p-TBK1 protein levels in retinal endothelial cells are significantly increased in mice fed with high fat diet compared with chow diet. In vitro, palmitic acid treatment on HRVECs induced mitochondrial DNA leakage into the cytosol, and augmented p-TBK1 protein and IFN-ß mRNA levels. As STING is localized to the ER, we analyzed the relation between STING activation and ER stress. In HRVECs, STING pathway was shown to be activated under chemical-induced ER stress, but attenuated when IRE1α was abolished by genetic deletion or pharmacological inhibition. Taken together, our findings revealed that STING signaling plays an important role in mediating lipotoxicity-induced endothelial inflammatory and injury, and IRE1α-XBP1 signaling potentiated STING signaling. Thus, targeting the IRE1α or STING pathways to alleviate endothelial inflammation provides candidate therapeutic target for treating DR as well as other microvascular complications.


Asunto(s)
Retinopatía Diabética , Hiperlipidemias , Ratones , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células Endoteliales/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Hiperlipidemias/metabolismo , Retinopatía Diabética/genética , Inflamación/metabolismo
12.
J Nutr Biochem ; 111: 109178, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228974

RESUMEN

Dysregulated production of peptide hormones is the key pathogenic factor of various endocrine diseases. Endoplasmic reticulum (ER) associated degradation (ERAD) is a critical machinery in maintaining ER proteostasis in mammalian cells by degrading misfolded proteins. Dysfunction of ERAD leads to maturation defect of many peptide hormones, such as provasopressin (proAVP), which results in the occurrence of Central Diabetes Insipidus. However, drugs targeting ERAD to regulate the production of peptide hormones are very limited. Herbal products provide not only nutritional sources, but also alternative therapeutics for chronic diseases. Virtual screening provides an effective and high-throughput strategy for identifying protein structure-based interacting compounds extracted from a variety of dietary or herbal sources, which could be served as (pro)drugs for preventing or treating endocrine diseases. Here, we performed a virtual screening by directly targeting SEL1L of the most conserved SEL1L-HRD1 ERAD machinery. Further, we analyzed 58 top-ranked compounds and demonstrated that Cryptochlorogenic acid (CCA) showed strong affinity with the binding pocket of SEL1L with HRD1. Through structure-based docking, protein expression assays, and FACS analysis, we revealed that CCA enhanced ERAD activity and promoted the degradation of misfolded proAVP, thus facilitated the secretion of well-folded proAVP. These results provide us with insights into drug discovery strategies targeting ER protein homeostasis, as well as candidate compounds for treating hormone-related diseases.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Hormonas Peptídicas , Animales , Retículo Endoplásmico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas/metabolismo , Hormonas Peptídicas/metabolismo , Mamíferos/metabolismo
13.
BMC Cancer ; 22(1): 1194, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402971

RESUMEN

BACKGROUND: The relative contributions of genetic and environmental factors versus unavoidable stochastic risk factors to the variation in cancer risk among tissues have become a widely-discussed topic. Some claim that the stochastic effects of DNA replication are mainly responsible, others believe that cancer risk is heavily affected by environmental and hereditary factors. Some of these studies made evidence from the correlation analysis between the lifetime number of stem cell divisions within each tissue and tissue-specific lifetime cancer risk. However, they did not consider the measurement error in the estimated number of stem cell divisions, which is caused by the exposure to different levels of genetic and environmental factors. This will obscure the authentic contribution of environmental or inherited factors. METHODS: In this study, we proposed two distinct modeling strategies, which integrate the measurement error model with the prevailing model of carcinogenesis to quantitatively evaluate the contribution of hereditary and environmental factors to cancer development. Then, we applied the proposed strategies to cancer data from 423 registries in 68 different countries (global-wide), 125 registries across China (national-wide of China), and 139 counties in Shandong province (Shandong provincial, China), respectively. RESULTS: The results suggest that the contribution of genetic and environmental factors is at least 92% to the variation in cancer risk among 17 tissues. Moreover, mutations occurring in progenitor cells and differentiated cells are less likely to be accumulated enough for cancer to occur, and the carcinogenesis is more likely to originate from stem cells. Except for medulloblastoma, the contribution of genetic and environmental factors to the risk of other 16 organ-specific cancers are all more than 60%. CONCLUSIONS: This work provides additional evidence that genetic and environmental factors play leading roles in cancer development. Therefore, the identification of modifiable environmental and hereditary risk factors for each cancer is highly recommended, and primary prevention in early life-course should be the major focus of cancer prevention.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Carcinogénesis/genética , Autorrenovación de las Células , Factores de Riesgo
14.
Front Endocrinol (Lausanne) ; 13: 967016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034446

RESUMEN

Endoplasmic reticulum (ER) is the principal organelle for protein synthesis, such as hepatokines and transmembrane proteins, and is critical for maintaining physiological function. Dysfunction of ER is associated with metabolic disorders. However, the role of ER homeostasis as well as hepatokines in the progression of non-alcoholic fatty liver disease (NAFLD) remains to be elucidated. Here we comprehensively analyzed the RNA-seq profiles of liver biopsies from 206 NAFLD patients and 10 controls from dataset GSE135251. The co-expression modules were constructed based on weighted gene co-expression network analysis and six co-expression modules were identified, of which brown module stood out to be significantly associated with fibrosis stage and NAFLD activity score (NAS). Subsequently, cytoscape with cytoHubba plugin was applied to identify hub genes in the brown module. GO and KEGG enrichment analysis of the top 20 hub genes were performed and showed the involvement of extracellular matrix formation, collagen synthesis and decomposition, etc. Further, the expression of the top 20 hub genes were found to be a consistent increasing trend as the fibrosis stages and NAS increased, which have been validated both in HFD fed and HFHC fed mice. Among these genes, THY1, PTGDS, TMPRSS3, SPON1, COL1A2, RHBDF1, COL3A1, COL5A1, COL1A1 and IGFBP7 performed well in distinguishing fibrosis stage, while COL1A2, COL3A1, THY1, RHBDF1 and COL1A2 exhibited good capacity to discriminate NAS. Besides, RHBDF1, COL3A1, QSOX1, STING1, COL5A1, IGFBP7, COL4A2, COL1A1, FKBP10 and COL1A2 also showed a strong power in the diagnosis of NAFLD. In addition, COL1A1, COL1A2, COL3A1, COL8A2, IGFBP7, PGF, PTGDS, SPON1, THY1 and TIMP1 were identified as secretome genes from the top 20 hub genes. Of them, circulated THY1 and collagen III level were validated to be significantly elevated in the MCD diet-induced mice. Thus, we provided a systemic view on understanding the pathological roles and mechanisms of ER as well as secretome in NAFLD progression. THY1, COL1A1, COL1A2, COL3A1 and RHBDF1 could be served as candidate biomarkers to evaluate the progression of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Retículo Endoplásmico , Fibrosis , Proteínas de la Membrana , Ratones , Secretoma , Transcriptoma
15.
Am J Cancer Res ; 12(6): 2891-2892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812051

RESUMEN

[This corrects the article on p. 688 in vol. 10, PMID: 32195036.].

16.
Mol Med ; 28(1): 29, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255803

RESUMEN

PURPOSE: Parkinson's disease (PD) is the second most common neurodegenerative disease without cure or effective treatment. This study explores whether the yeast internal NADH-quinone oxidoreductase (NDI1) can functionally replace the defective mammalian mitochondrial complex I, which may provide a gene therapy strategy for treating sporadic PD caused by mitochondrial complex I dysfunction. METHOD: Recombinant lentivirus expressing NDI1 was transduced into SH-SY5Y cells, or recombinant adeno-associated virus type 5 expressing NDI1 was transduced into the right substantia nigra pars compacta (SNpc) of mouse. PD cell and mouse models were established by rotenone treatment. The therapeutic effects of NDI1 on rotenone-induced PD models in vitro and vivo were assessed in neurobehavior, neuropathology, and mitochondrial functions, by using the apomorphine-induced rotation test, immunohistochemistry, immunofluorescence, western blot, complex I enzyme activity determination, oxygen consumption detection, ATP content determination and ROS measurement. RESULTS: NDI1 was expressed and localized in mitochondria in SH-SY5Y cells. NDI1 resisted rotenone-induced changes in cell morphology, loss of cell viability, accumulation of α-synuclein and pS129 α-synuclein, mitochondrial ROS production and mitochondria-mediated apoptosis. The basal and maximal oxygen consumption, mitochondrial coupling efficiency, basal and oligomycin-sensitive ATP and complex I activity in cell model were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. NDI1 was efficiently expressed in dopaminergic neurons in the right SNpc without obvious adverse effects. The rotation number to the right side (NDI1-treated side) was significantly increased compared to that to the left side (untreated side) in mouse model. The number of viable dopaminergic neurons, the expression of tyrosine hydroxylase, total and maximal oxygen consumption, mitochondrial coupling efficiency and complex I enzyme activity in right substantia nigra, and the content of dopamine in right striatum were significantly increased in rotenone + NDI1 group compared to rotenone + vector group. CONCLUSION: Yeast NDI1 can rescue the defect of oxidative phosphorylation in rotenone-induced PD cell and mouse models, and ameliorate neurobehavioral and neuropathological damages. The results may provide a basis for the yeast NDI1 gene therapy of sporadic PD caused by mitochondrial complex I dysfunction.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfato , Animales , Dependovirus , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Terapia Genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Enfermedades Neurodegenerativas/terapia , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
17.
Mol Med Rep ; 25(3)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35039876

RESUMEN

Animal models for Parkinson's disease (PD) are very useful in understanding the pathogenesis of PD and screening for new therapeutic approaches. The present study compared two commonly used neurotoxin­induced mouse models of chronic PD to guide model selection, explore the pathogenesis and mechanisms underlying PD and develop effective treatments. The chronic PD mouse models were established via treatment with rotenone or 1­methyl­4­phenyl­1,2,3,6-tetrahydropyridine (MPTP) for 6 weeks. The effects of rotenone and MPTP in the mice were compared by assessing neurobehavior, neuropathology and mitochondrial function through the use of the pole, rotarod and open field tests, immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), ionized calcium­binding adapter molecule 1 (Iba­1), neuronal nuclear antigen (NeuN) and (p)S129 α­synuclein, immunofluorescence for GFAP, Iba­1 and NeuN, western blotting for TH, oxygen consumption, complex I enzyme activity. The locomotor activity, motor coordination and exploratory behavior in both rotenone and MPTP groups were significantly lower compared with the control group. However, behavioral tests were no significant differences between the two groups. In the MPTP group, the loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta, the reduction of the tyrosine hydroxylase content in the SN and striatum and the astrocyte proliferation and microglial activation in the SN were more significant compared with the rotenone group. Notably, mitochondrial­dependent oxygen consumption and complex I enzyme activity in the SN were significantly reduced in the rotenone group compared with the MPTP group. In addition, Lewy bodies were present only in SN neurons in the rotenone group. Although no significant differences in neurobehavior were observed between the two mouse models, the MPTP model reproduced the pathological features of PD more precisely in terms of the loss of DA neurons, decreased dopamine levels and neuroinflammation in the SN. On the other hand, the rotenone model was more suitable for studying the role of mitochondrial dysfunction (deficient complex I activity) and Lewy body formation in the SN, which is a characteristic pathological feature of PD. The results indicated that MPTP and rotenone PD models have advantages and disadvantages, therefore one or both should be selected based on the purpose of the study.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedad de Parkinson Secundaria/fisiopatología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Reacción de Prevención/fisiología , Western Blotting , Enfermedad Crónica , Proteínas de Unión al ADN/metabolismo , Neuronas Dopaminérgicas/citología , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunohistoquímica , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Parkinson Secundaria/inducido químicamente , Rotenona , Sustancia Negra/citología , Tirosina 3-Monooxigenasa/metabolismo
18.
Am J Cancer Res ; 10(2): 688-703, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195036

RESUMEN

Trastuzumab-resistance is still a major challenge in treating patients with HER2 positive breast cancer. In this study, we tried to overcome transtuzumab-resistance by examining the therapeutic efficacy of third generation anti-HER2 chimeric antigen receptor (CAR)-T cells alone and in combination with PD1 blockade against HER2 positive and trastuzumab-resistance breast cancer cells in vitro and xenograft model. The anti-HER2 CAR-T cells were generated by infecting CD3/CD28 activated peripheral blood mononuclear cells with lentivirus expressing third generation anti-HER2 CAR. Anti-HER2 CAR-T cells were specifically targeted to HER2 positive BT474 and trastuzumab resistant HCC1954 cells compared with HER2 negative breast cancer cells. Results from ELISA revealed that the secretion of IL-2 and IFN-γ was increased in anti-HER2 CAR-T cells after being co-cultured with HCC1954 cells, and was further increased with the addition of anti-PD1 antibody in the co-culture system. Furthermore, data from lactate dehydrogenase assay showed that anti-HER2 CAR-T cells displayed a potent cytotoxicity against HCC1954 and BT474 cells. Addition of anti-PD1 antibody further enhanced the cytotoxicity of anti-HER2 CAR-T cells against HCC1954 cells. Lastly, injection of anti-HER2 CAR-T cells significantly reduced the growth of HCC1954 xenograft tumors. Combining anti-HER2 CAR-T cells with anti-PD1 antibody further impaired the growth of HCC1954 tumors. The present results indicate that anti-HER2 CAR-T cells have therapeutic efficacy against trastuzumab resistant breast tumors and addition of the PD1 antibody can further enhance the therapeutic effect of anti-HER2 CAR-T cells. Thus, third generation anti-HER2 CAR-T cells along with PD1 blockade is a potential therapy to overcome trastuzumab resistance of breast cancer.

19.
J Cell Mol Med ; 24(4): 2531-2541, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930692

RESUMEN

Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar-free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three-dimensional network. CTs might play a role in the regeneration of injured myocardium.


Asunto(s)
Cardiopatías/patología , Corazón/fisiología , Telocitos/patología , Xenopus/fisiología , Animales , Miocitos Cardíacos/patología , Regeneración/fisiología , Telopodos/patología
20.
Oncol Lett ; 17(6): 4835-4842, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31186690

RESUMEN

The talin proteins are a key component of the extracellular matrix-integrin-cytoskeleton system, and our previous study suggested that talin2 contributes to the tumor invasion and metastasis processes regulated by the tumor microenvironment. In the present study, the specific effects of talin2 on the invasive ability of breast cancer cells, as well as the underlying mechanism, were investigated by creating two MDA-MB-231 cell lines with stable talin2 knockdown by specific RNA interference. Initially, it was confirmed that the expression levels of talin2 in human breast cancer tissues were upregulated compared with in normal adjacent tissues. Subsequently, invasion and wound healing assays revealed that depletion of talin2 in MDA-MB-231 cells decreased their migratory and invasive abilities. Western blot analysis demonstrated that knockdown of talin2 in MDA-MB-231 cells caused marked downregulation of the tumor microenvironment markers hypoxia-inducible factor 1α, phosphorylated ribosomal protein S6 kinase, phosphorylated protein kinase B and phosphorylated mechanistic target of rapamycin. Furthermore, knockdown of talin2 decreased the basal contents of glucose and lactic acid in the breast cancer cell line. In conclusion, the findings of the present study demonstrated that talin2 knockdown may inhibit the invasive ability of human breast cancer MDA-MB-23l cells via alterations in the tumor microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...