Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 240(5): 2058-2071, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37717220

RESUMEN

Distyly has evolved independently in numerous animal-pollinated angiosperm lineages. Understanding of its molecular basis has been restricted to a few species, primarily Primula. Here, we investigate the genetic architecture of the single diallelic locus (S-locus) supergene, a linkage group of functionally associated genes, and explore how it may have evolved in distylous Nymphoides indica, a lineage of flowering plants not previously investigated. We assembled haplotype-resolved genomes, used read-coverage-based genome-wide association study (rb-GWAS) to locate the S-locus supergene, co-expression network analysis to explore gene networks underpinning the development of distyly, and comparative genomic analyses to investigate the origins of the S-locus supergene. We identified three linked candidate S-locus genes - NinBAS1, NinKHZ2, and NinS1 - that were only evident in the short-styled morph and were hemizygous. Co-expression network analysis suggested that brassinosteroids contribute to dimorphic sex organs in the short-styled morph. Comparative genomic analyses indicated that the S-locus supergene likely evolved via stepwise duplications and has been affected by transposable element activities. Our study provides novel insight into the structure, regulation, and evolution of the supergene governing distyly in N. indica. It also provides high-quality genomic resources for future research on the molecular mechanisms underlying the striking evolutionary convergence in form and function across heterostylous taxa.


Asunto(s)
Estudio de Asociación del Genoma Completo , Primula , Haplotipos/genética , Primula/genética , Genómica , Flores/genética
2.
DNA Res ; 29(4)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35751614

RESUMEN

Nymphoides indica, an aquatic plant, is an invasive species that causes both ecological and economic damage in North America and elsewhere. However, the lack of genomic data of N. indica limits the in-depth analysis of this invasive species. Here, we report a chromosome-level genome assembly of nine pseudochromosomes of N. indica with a total size of ∼ 520 Mb. More than half of the N. indica genome consists of transposable elements (TEs), and a higher density of TEs around genes may play a significant role in response to an ever-changing environment by regulating the nearby gene. Additionally, our analysis revealed that N. indica only experienced a gamma (γ) whole-genome triplication event. Functional enrichment of the N. indica-specific and expanded gene families highlighted genes involved in the responses to hypoxia and plant-pathogen interactions, which may strengthen the ability to adapt to external challenges and improve ecological fitness. Furthermore, we identified 160 members of the nucleotide-binding site and leucine-rich repeat gene family, which may be linked to the defence response. Collectively, the high-quality N. indica genome reported here opens a novel avenue to understand the evolution and rapid invasion of Nymphoides spp.


Asunto(s)
Cromosomas , Elementos Transponibles de ADN , Sitios de Unión , Genoma de Planta , Filogenia , Dominios Proteicos
3.
Mol Ecol Resour ; 22(7): 2732-2743, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35620935

RESUMEN

Pistia stratiotes (Araceae), commonly referred to as water lettuce, is one of the most notorious weeds that cause severe damage to the economy and natural ecosystems of infested areas. In order to explore the mechanism of its rapid invasion, here, we assembled a high-quality chromosome-level genome for P. stratiotes based on the Illumina sequencing, PacBio sequencing, and Hi-C scaffolding technology. The assembled genome is 311.87 Mb in size with a contig N50 of 1.08 Mb. The contigs were further anchored on 14 pseudochromosomes with a scaffold N50 of 21.21 Mb. A total of 20,356 protein-coding genes were predicted, of which 79.35% were functionally annotated here. Evolutionary analysis showed that P. stratiotes and Colocasia esculenta were clustered together as sister lineages that diverged approximately 61 Ma. The synteny analyses indicated that two whole-genome duplication (WGD) events occurred within a short period in P. stratiotes. Moreover, comparative genome analysis indicated that the expansion of gene families corresponding to disease resistance might contribute to rapid invasion in P. stratiotes. Also, we analysed the disease-resistance gene family (NBS-LRR) involved in plant defence. A genome-wide search in P. stratiotes genome identified 85 NBS-LRR genes in this study. In conclusion, this study provides some new insights into the evolution of the invasive aquatic plant P. stratiotes. Our reference genome will also provide valuable resources for future invasion genomic research programmes.


Asunto(s)
Araceae , Araceae/genética , Cromosomas , Ecosistema , Genoma , Genómica , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA